Dual (category theory)

From Wikipedia, the free encyclopedia
  (Redirected from Duality (category theory))
Jump to navigation Jump to search

In category theory, a branch of mathematics, duality is a correspondence between the properties of a category C and the dual properties of the opposite category Cop. Given a statement regarding the category C, by interchanging the source and target of each morphism as well as interchanging the order of composing two morphisms, a corresponding dual statement is obtained regarding the opposite category Cop. Duality, as such, is the assertion that truth is invariant under this operation on statements. In other words, if a statement is true about C, then its dual statement is true about Cop. Also, if a statement is false about C, then its dual has to be false about Cop.

Given a concrete category C, it is often the case that the opposite category Cop per se is abstract. Cop need not be a category that arises from mathematical practice. In this case, another category D is also termed to be in duality with C if D and Cop are equivalent as categories.

In the case when C and its opposite Cop are equivalent, such a category is self-dual.[1]

Formal definition[edit]

We define the elementary language of category theory as the two-sorted first order language with objects and morphisms as distinct sorts, together with the relations of an object being the source or target of a morphism and a symbol for composing two morphisms.

Let σ be any statement in this language. We form the dual σop as follows:

  1. Interchange each occurrence of "source" in σ with "target".
  2. Interchange the order of composing morphisms. That is, replace each occurrence of with

Informally, these conditions state that the dual of a statement is formed by reversing arrows and compositions.

Duality is the observation that σ is true for some category C if and only if σop is true for Cop.[2][3]

Examples[edit]

  • A morphism is a monomorphism if implies . Performing the dual operation, we get the statement that implies For a morphism , this is precisely what it means for f to be an epimorphism. In short, the property of being a monomorphism is dual to the property of being an epimorphism.

Applying duality, this means that a morphism in some category C is a monomorphism if and only if the reverse morphism in the opposite category Cop is an epimorphism.

  • An example comes from reversing the direction of inequalities in a partial order. So if X is a set and ≤ a partial order relation, we can define a new partial order relation ≤new by
xnew y if and only if yx.

This example on orders is a special case, since partial orders correspond to a certain kind of category in which Hom(A,B) can have at most one element. In applications to logic, this then looks like a very general description of negation (that is, proofs run in the opposite direction). For example, if we take the opposite of a lattice, we will find that meets and joins have their roles interchanged. This is an abstract form of De Morgan's laws, or of duality applied to lattices.

See also[edit]

References[edit]

  1. ^ Jiří Adámek; J. Rosicky (1994). Locally Presentable and Accessible Categories. Cambridge University Press. p. 62. ISBN 978-0-521-42261-1.
  2. ^ Mac Lane 1978, p. 33.
  3. ^ Awodey 2010, p. 53-55.