Basic research

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Basic research, also called pure research or fundamental research, has the scientific research aim to improve scientific theories for improved understanding or prediction of natural or other phenomena.[1] Applied research, in turn, uses scientific theories to develop technology or techniques to intervene and alter natural or other phenomena. Though often driven by curiosity,[2] basic research fuels applied science's innovations.[3] The two aims are often coordinated in research and development.

Overview[edit]

Despite smart people working on this problem for 50 years, we're still discovering surprisingly basic things about the earliest history of our world. It's quite humbling. — Matija Ćuk, scientist at the SETI Institute and lead researcher, November 2016[4]

Basic research advances fundamental knowledge about the world. It focuses on creating and refuting or supporting theories that explain observed phenomena. Pure research is the source of most new scientific ideas and ways of thinking about the world. It can be exploratory, descriptive, or explanatory; however, explanatory research is the most common.[citation needed]

Basic research generates new ideas, principles, and theories, which may not be immediately utilized but nonetheless form the basis of progress and development in different fields. Today's computers, for example, could not exist without research in pure mathematics conducted over a century ago, for which there was no known practical application at the time. Basic research rarely helps practitioners directly with their everyday concerns; nevertheless, it stimulates new ways of thinking that have the potential to revolutionize and dramatically improve how practitioners deal with a problem in the future.[citation needed]

By country[edit]

In the United States, basic research is funded mainly by federal government and done mainly at universities and institutes.[5] As government funding has diminished in the 2010s, however, private funding is increasingly important.[6]

Basic versus applied science[edit]

Applied science focuses on the development of technology and techniques. In contrast, basic science develops scientific knowledge and predictions, principally in natural sciences but also in other empirical sciences, which are used as the scientific foundation for applied science. Basic science develops and establishes information to predict phenomena and perhaps to understand nature, whereas applied science uses portions of basic science to develop interventions via technology or technique to alter events or outcomes.[7][8] Applied and basic sciences can interface closely in research and development.[9][10] The interface between basic research and applied research has been studied by the National Science Foundation. It conducted a study in which it traced the relationship between basic scientific research efforts and the development of major innovations, such as oral contraceptives and videotape recorders. This study found that basic research played a key role in the development in all of the innovations. The number of basic science research[clarification needed] that assisted in the production of a given innovation peaked[clarification needed] between 20 and 30 years before the innovation itself. While most innovation takes the form of applied science and most innovation occurs in the private sector, basic research is a necessary precursor to almost all applied science and associated instances of innovation. Roughly 76% of basic research is conducted by universities.[11]

A distinction can be made between basic science and disciplines such as medicine and technology.[7][8][12][13][14] They can be grouped as STM (science, technology, and medicine; not to be confused with STEM [science, technology, engineering, and mathematics]) or STS (science, technology, and society). These groups are interrelated and influence each other,[15][16][17][18][19] although they may differ in the specifics such as methods and standards.[8][12][19][20]

The Nobel Prize mixes basic with applied sciences for its award in Physiology or Medicine. In contrast, the Royal Society of London awards distinguish natural science from applied science.[21]

See also[edit]

References[edit]

  1. ^ "What is basic research?" (PDF). National Science Foundation. Retrieved 2014-05-31.
  2. ^ "Curiosity creates cures: The value and impact of basic research Archived October 20, 2013, at the Wayback Machine, National Institute of General Medical Sciences, National Institutes of Health.
  3. ^ "ICSU position statement: The value of basic scientific research", International Council for Science, December 2004.
  4. ^ Jacqueline Ronson (November 1, 2016). "Why is the Earth Tilted? New Theory Offers Clues on a Dizzy Moment". Inverse. Retrieved October 18, 2017.
  5. ^ Ganapati, Priya (2008-08-27). "Bell Labs kills fundamental physics research". Wired. Archived from the original on 28 August 2008. Retrieved 2008-08-28.
  6. ^ William J. Broad (March 15, 2014). "Billionaires with big ideas are privatizing American science". New York Times. Retrieved December 26, 2014.
  7. ^ a b "Limited scope of science". & "Technology" in Bernard Davis (Mar 2000). "The scientist's world". Microbiology and Molecular Biology Reviews. 64 (1): 1–12. doi:10.1128/MMBR.64.1.1-12.2000. PMC 98983. PMID 10704471.
  8. ^ a b c James McCormick (2001). "Scientific medicine—fact of fiction? The contribution of science to medicine". Occasional Paper (Royal College of General Practitioners) (80): 3–6. PMC 2560978. PMID 19790950.
  9. ^ Gerard Piel, "Science and the next fifty years", § "Applied vs basic science", Bulletin of the Atomic Scientists, 1954 Jan;10(1):17–20, p 18.
  10. ^ Ruth-Marie E Fincher, Paul M Wallach & W Scott Richardson, "Basic science right, not basic science lite: Medical education at a crossroad", Journal of General Internal Medicine, Nov 2009;24(11):1255–58, abstract: "Thoughtful changes in education provide the opportunity to improve understanding of fundamental sciences, the process of scientific inquiry, and translation of that knowledge to clinical practice".
  11. ^ Stephan, Paula (2012). How Economics Shapes Science. Cambridge, MA: Harvard University Press. p. 146. ISBN 978-0-674-04971-0.
  12. ^ a b Richard Smith (Mar 2006). "The trouble with medical journals". Journal of the Royal Society of Medicine. 99 (3): 115–9. doi:10.1258/jrsm.99.3.115. PMC 1383755. PMID 16508048.
  13. ^ Leon Eisenberg (Mar 1988). "Science in medicine: Too much or too little and too limited in scope?". American Journal of Medicine. 84 (3 Pt 1): 483–91. doi:10.1016/0002-9343(88)90270-7. PMID 3348249.
  14. ^ J N Clarke; S Arnold; M Everest & K Whitfield (Jan 2007). "The paradoxical reliance on allopathic medicine and positivist science among skeptical audiences". Social Science & Medicine. 64 (1): 164–73. doi:10.1016/j.socscimed.2006.08.038. PMID 17045377.
  15. ^ Eric Holtzman (1981). "Science, philosophy, and society: Some recent books". International Journal of Health Services. 11 (1): 123–49. doi:10.2190/l5eu-e7pc-hxg6-euml. PMID 7016767.
  16. ^ P M Strong PM & K McPherson (1982). "Natural science and medicine: Social science and medicine: Some methodological controversies". Social Science & Medicine. 16 (6): 643–57. doi:10.1016/0277-9536(82)90454-3. PMID 7089600.
  17. ^ Lucien R Karhausen (2000). "Causation: The elusive grail of epidemiology". Medicine, Health Care, and Philosophy. 3 (1): 59–67. doi:10.1023/A:1009970730507. PMID 11080970.
  18. ^ K Bayertz & P Nevers (1998). "Biology as technology". Clio Medica. 48: 108–32. PMID 9646019.
  19. ^ a b John V Pickstone & Michael Worboys (Mar 2011). "Focus: Between and beyond 'histories of science' and 'histories of medicine'—introduction". Isis. 102 (1): 97–101. doi:10.1086/658658. PMID 21667777.
  20. ^
  21. ^ "Medals, Awards & Prize lectures", The Royal Society website, accessed 22 Sep 2013.

Further reading[edit]