Bounded function

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
A schematic illustration of a bounded function (red) and an unbounded one (blue). Intuitively, the graph of a bounded function stays within a horizontal band, while the graph of an unbounded function does not.

In mathematics, a function f defined on some set X with real or complex values is called bounded, if the set of its values is bounded. In other words, there exists a real number M such that

for all x in X. A function that is not bounded is said to be unbounded.

If f is real-valued and f(x) ≤ A for all x in X, then the function is said to be bounded (from) above by A. If f(x) ≥ B for all x in X, then the function is said to be bounded (from) below by B. A real-valued function is bounded if and only if it is bounded from above and below.

An important special case is a bounded sequence, where X is taken to be the set N of natural numbers. Thus a sequence f = (a0, a1, a2, ...) is bounded if there exists a real number M such that

for every natural number n. The set of all bounded sequences forms the sequence space .

The definition of boundedness can be generalized to functions f : X → Y taking values in a more general space Y by requiring that the image f(X) is a bounded set in Y.

Related Notions[edit]

Weaker than boundedness is local boundedness. A family of bounded functions may be uniformly bounded.

A bounded operator T : X → Y is not a bounded function in the sense of this page's definition (unless T = 0), but has the weaker property of preserving boundedness: Bounded sets M ⊆ X are mapped to bounded sets T(M) ⊆ Y. This definition can be extended to any function f : XY if X and Y allow for the concept of a bounded set.

Examples[edit]

  • The function sin : RR is bounded.
  • The function defined for all real x except for −1 and 1 is unbounded. As x approaches −1 or 1, the values of this function get larger and larger in magnitude. This function can be made bounded if one considers its domain to be, for example, [2, ∞) or (−∞, −2].
  • The function defined for all real x is bounded.
  • Every continuous function f : [0, 1] → R is bounded. More generally, any continuous function from a compact space into a metric space is bounded.
  • All complex-valued functions f : RC which are entire are either unbounded or constant as a consequence of Liouville's theorem. In particular, the complex sin : CC must be unbounded since it's entire.
  • The function f which takes the value 0 for x rational number and 1 for x irrational number (cf. Dirichlet function) is bounded. Thus, a function does not need to be "nice" in order to be bounded. The set of all bounded functions defined on [0, 1] is much bigger than the set of continuous functions on that interval.

See also[edit]