Comparison of deep learning software
Jump to navigation
Jump to search
The following table compares notable software frameworks, libraries and computer programs for deep learning.
Deep learning software by name[edit]
Software | Creator | Initial Release | Software license[a] | Open source | Platform | Written in | Interface | OpenMP support | OpenCL support | CUDA support | Automatic differentiation[1] | Has pretrained models | Recurrent nets | Convolutional nets | RBM/DBNs | Parallel execution (multi node) | Actively Developed |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BigDL | Jason Dai (Intel) | 2016 | Apache 2.0 | Yes | Apache Spark | Scala | Scala, Python | No | Yes | Yes | Yes | ||||||
Caffe | Berkeley Vision and Learning Center | 2013 | BSD | Yes | Linux, macOS, Windows[2] | C++ | Python, MATLAB, C++ | Yes | Under development[3] | Yes | Yes | Yes[4] | Yes | Yes | No | ? | |
Chainer | Preferred Networks | 2015 | BSD | Yes | Linux, macOS | Python | Python | No | No | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes |
Deeplearning4j | Skymind engineering team; Deeplearning4j community; originally Adam Gibson | 2014 | Apache 2.0 | Yes | Linux, macOS, Windows, Android (Cross-platform) | C++, Java | Java, Scala, Clojure, Python (Keras), Kotlin | Yes | No[5] | Yes[6][7] | Computational Graph | Yes[8] | Yes | Yes | Yes | Yes[9] | |
Dlib | Davis King | 2002 | Boost Software License | Yes | Cross-Platform | C++ | C++ | Yes | No | Yes | Yes | Yes | No | Yes | Yes | Yes | |
Intel Data Analytics Acceleration Library | Intel | 2015 | Apache License 2.0 | Yes | Linux, macOS, Windows on Intel CPU[10] | C++, Python, Java | C++, Python, Java[10] | Yes | No | No | Yes | No | Yes | Yes | |||
Intel Math Kernel Library | Intel | Proprietary | No | Linux, macOS, Windows on Intel CPU[11] | C[12] | Yes[13] | No | No | Yes | No | Yes[14] | Yes[14] | No | ||||
Keras | François Chollet | 2015 | MIT license | Yes | Linux, macOS, Windows | Python | Python, R | Only if using Theano as backend | Can use Theano or Tensorflow as backends | Yes | Yes | Yes[15] | Yes | Yes | Yes | Yes[16] | Yes |
MATLAB + Neural Network Toolbox | MathWorks | Proprietary | No | Linux, macOS, Windows | C, C++, Java, MATLAB | MATLAB | No | No | Train with Parallel Computing Toolbox and generate CUDA code with GPU Coder[17] | No | Yes[18][19] | Yes[18] | Yes[18] | No | With Parallel Computing Toolbox[20] | Yes | |
Microsoft Cognitive Toolkit (CNTK) | Microsoft Research | 2016 | MIT license[21] | Yes | Windows, Linux[22] (macOS via Docker on roadmap) | C++ | Python (Keras), C++, Command line,[23] BrainScript[24] (.NET on roadmap[25]) | Yes[26] | No | Yes | Yes | Yes[27] | Yes[28] | Yes[28] | No[29] | Yes[30] | Yes |
Apache MXNet | Apache Software Foundation | 2015 | Apache 2.0 | Yes | Linux, macOS, Windows,[31][32] AWS, Android,[33] iOS, JavaScript[34] | Small C++ core library | C++, Python, Julia, Matlab, JavaScript, Go, R, Scala, Perl | Yes | On roadmap[35] | Yes | Yes[36] | Yes[37] | Yes | Yes | Yes | Yes[38] | Yes |
Neural Designer | Artelnics | Proprietary | No | Linux, macOS, Windows | C++ | Graphical user interface | Yes | No | No | ? | ? | No | No | No | ? | ||
OpenNN | Artelnics | 2003 | GNU LGPL | Yes | Cross-platform | C++ | C++ | Yes | No | Yes | ? | ? | No | No | No | ? | |
PyTorch | Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan (Facebook) | 2016 | BSD | Yes | Linux, macOS, Windows | Python, C, CUDA | Python | Yes | Via separately maintained package[39][40][41] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
Apache SINGA | Apache Incubator | 2015 | Apache 2.0 | Yes | Linux, macOS, Windows | C++ | Python, C++, Java | No | Supported in V1.0 | Yes | ? | Yes | Yes | Yes | Yes | Yes | |
TensorFlow | Google Brain | 2015 | Apache 2.0 | Yes | Linux, macOS, Windows,[42] Android | C++, Python, CUDA | Python (Keras), C/C++, Java, Go, JavaScript, R,[43] Julia, Swift | No | On roadmap[44] but already with SYCL[45] support | Yes | Yes[46] | Yes[47] | Yes | Yes | Yes | Yes | Yes |
Theano | Université de Montréal | 2007 | BSD | Yes | Cross-platform | Python | Python (Keras) | Yes | Under development[48] | Yes | Yes[49][50] | Through Lasagne's model zoo[51] | Yes | Yes | Yes | Yes[52] | No |
Torch | Ronan Collobert, Koray Kavukcuoglu, Clement Farabet | 2002 | BSD | Yes | Linux, macOS, Windows,[53] Android,[54] iOS | C, Lua | Lua, LuaJIT,[55] C, utility library for C++/OpenCL[56] | Yes | Third party implementations[57][58] | Yes[59][60] | Through Twitter's Autograd[61] | Yes[62] | Yes | Yes | Yes | Yes[63] | No |
Wolfram Mathematica | Wolfram Research | 1988 | Proprietary | No | Windows, macOS, Linux, Cloud computing | C++, Wolfram Language, CUDA | Wolfram Language | Yes | No | Yes | Yes | Yes[64] | Yes | Yes | Yes | Under Development | Yes |
- ^ Licenses here are a summary, and are not taken to be complete statements of the licenses. Some libraries may use other libraries internally under different licenses
Related software[edit]
- Neural Engineering Object (NENGO) – A graphical and scripting software for simulating large-scale neural systems
- Numenta Platform for Intelligent Computing – Numenta's open source implementation of their hierarchical temporal memory model
See also[edit]
- Comparison of numerical analysis software
- Comparison of statistical packages
- List of datasets for machine learning research
- List of numerical analysis software
References[edit]
- ^ Atilim Gunes Baydin; Barak A. Pearlmutter; Alexey Andreyevich Radul; Jeffrey Mark Siskind (20 February 2015). "Automatic differentiation in machine learning: a survey". arXiv:1502.05767 [cs.LG].
- ^ "Microsoft/caffe". GitHub.
- ^ "OpenCL Caffe".
- ^ "Caffe Model Zoo".
- ^ "Support for Open CL · Issue #27 · deeplearning4j/nd4j". GitHub.
- ^ "N-Dimensional Scientific Computing for Java".
- ^ "Comparing Top Deep Learning Frameworks". Deeplearning4j.
- ^ Chris Nicholson; Adam Gibson. "Deeplearning4j Models".
- ^ Deeplearning4j. "Deeplearning4j on Spark". Deeplearning4j.
- ^ a b Intel® Data Analytics Acceleration Library (Intel® DAAL) | Intel® Software
- ^ Intel® Math Kernel Library (Intel® MKL) | Intel® Software
- ^ Deep Neural Network Functions
- ^ Using Intel® MKL with Threaded Applications | Intel® Software
- ^ a b Intel® Xeon Phi™ Delivers Competitive Performance For Deep Learning—And Getting Better Fast | Intel® Software
- ^ https://keras.io/applications/
- ^ Does Keras support using multiple GPUs? · Issue #2436 · fchollet/keras
- ^ "GPU Coder - MATLAB & Simulink". MathWorks. Retrieved 13 November 2017.
- ^ a b c "Neural Network Toolbox - MATLAB". MathWorks. Retrieved 13 November 2017.
- ^ "Deep Learning Models - MATLAB & Simulink". MathWorks. Retrieved 13 November 2017.
- ^ "Parallel Computing Toolbox - MATLAB". MathWorks. Retrieved 13 November 2017.
- ^ "CNTK/LICENSE.md at master · Microsoft/CNTK · GitHub". GitHub.
- ^ "Setup CNTK on your machine". GitHub.
- ^ "CNTK usage overview". GitHub.
- ^ "BrainScript Network Builder". GitHub.
- ^ ".NET Support · Issue #960 · Microsoft/CNTK". GitHub.
- ^ "How to train a model using multiple machines? · Issue #59 · Microsoft/CNTK". GitHub.
- ^ https://github.com/Microsoft/CNTK/issues/140#issuecomment-186466820
- ^ a b "CNTK - Computational Network Toolkit". Microsoft Corporation.
- ^ url=https://github.com/Microsoft/CNTK/issues/534
- ^ "Multiple GPUs and machines". Microsoft Corporation.
- ^ "Releases · dmlc/mxnet". Github.
- ^ "Installation Guide — mxnet documentation". Readthdocs.
- ^ "MXNet Smart Device". ReadTheDocs.
- ^ "MXNet.js". Github.
- ^ "Support for other Device Types, OpenCL AMD GPU · Issue #621 · dmlc/mxnet". GitHub.
- ^ https://mxnet.readthedocs.io/
- ^ "Model Gallery". GitHub.
- ^ "Run MXNet on Multiple CPU/GPUs with Data Parallel". GitHub.
- ^ https://github.com/hughperkins/pytorch-coriander
- ^ https://github.com/pytorch/pytorch/issues/488
- ^ https://github.com/pytorch/pytorch/issues/488#issuecomment-273626736
- ^ https://developers.googleblog.com/2016/11/tensorflow-0-12-adds-support-for-windows.html
- ^ interface), JJ Allaire (R; RStudio; Eddelbuettel, Dirk; Golding, Nick; Tang, Yuan; Tutorials), Google Inc (Examples and (2017-05-26), tensorflow: R Interface to TensorFlow, retrieved 2017-06-14
- ^ "tensorflow/roadmap.md at master · tensorflow/tensorflow · GitHub". GitHub. January 23, 2017. Retrieved May 21, 2017.
- ^ "OpenCL support · Issue #22 · tensorflow/tensorflow". GitHub.
- ^ https://www.tensorflow.org/
- ^ https://github.com/tensorflow/models
- ^ "Using the GPU — Theano 0.8.2 documentation".
- ^ http://deeplearning.net/software/theano/library/gradient.html
- ^ https://groups.google.com/d/msg/theano-users/mln5g2IuBSU/gespG36Lf_QJ
- ^ "Recipes/modelzoo at master · Lasagne/Recipes · GitHub". GitHub.
- ^ Using multiple GPUs — Theano 0.8.2 documentation
- ^ https://github.com/torch/torch7/wiki/Windows
- ^ "GitHub - soumith/torch-android: Torch-7 for Android". GitHub.
- ^ "Torch7: A Matlab-like Environment for Machine Learning" (PDF).
- ^ "GitHub - jonathantompson/jtorch: An OpenCL Torch Utility Library". GitHub.
- ^ "Cheatsheet". GitHub.
- ^ "cltorch". GitHub.
- ^ "Torch CUDA backend". GitHub.
- ^ "Torch CUDA backend for nn". GitHub.
- ^ https://github.com/twitter/torch-autograd
- ^ "ModelZoo". GitHub.
- ^ https://github.com/torch/torch7/wiki/Cheatsheet#distributed-computing--parallel-processing
- ^ http://resources.wolframcloud.com/NeuralNetRepository