Négynégyzetszám-tétel
A négynégyzetszám-tétel az additív számelmélet egyik tétele. Azt állítja, hogy minden természetes szám előáll négy négyzetszám összegeként: 7=4+1+1+1, 15=9+4+1+1, 32=16+16+0+0. Lagrange igazolta 1770-ben, Bachet sejtette 1621-ben de a sejtést valószínűleg már sokkal korábban kimondták.
Tartalomjegyzék
Az Euler-azonosság[szerkesztés]
Ez a következő:
Az állítás a szorzások elvégzésével könnyen látható.
A tétel igazolása[szerkesztés]
Elég prímekre igazolni[szerkesztés]
A fenti Euler-azonosság alapján, ha két számra tudjuk az állítást, akkor a szorzatukra is. Indukcióval ez akárhány szám szorzatára is igaz. Ha tudjuk az állítást prímszámokra, mivel minden szám prímek szorzatára bontható, készen vagyunk.
Minden prímnek van ilyen többszöröse[szerkesztés]
Legyen tehát p prím. Feltehetjük, hogy p legalább 3. Először belátjuk, hogy p-nek van négy négyzetszám összegeként írható olyan többszöröse, amiben a négyzetszámok nem mind oszthatók p-vel. Ennél erősebb tételt igazolunk: p-nek van x2+y2+1 alakú többszöröse. Valóban, ha vesszük a négyzetszámokat mod p, azaz a mod p kvadratikus maradékokat, akkor maradékosztályoknak egy (p+1)/2 elemű A halmazát kapjuk. A Cauchy–Davenport-lemma szerint A+A tartalmaz minden mod p vett maradékosztályt, így –1-et is, ami pontosan a bizonyítandó állítás.
A bizonyítás befejezése[szerkesztés]
A végtelen leszállás módszerével bebizonyítjuk, hogy ha n>1 pozitív egész, amire np négy négyzetszám összege, akkor van 1<m<n, amire ugyanez igaz.
Tegyük fel először, hogy n páros. Ekkor, az
egyenlőségbeli x, y, z, u közül 0, 2 vagy 4 páros. Permutálva őket feltehetjük, hogy x és y, valamint z és u azonos paritású. Ekkor viszont a négy négyzetszám összegeként írható
kiszorozva
azaz p (n/2)-szerese, tehát kisebb többszöröse.
Tegyük fel végül, hogy n>1 páratlan és np=x2+y2+z2+u2. Legyen x, y, z, u n-nel vett legkisebb abszolút értékű maradéka rendre X, Y,Z,U. Jegyezzük meg, hogy X, Y, Z, U mindegyikének abszolút értéke kisebb n/2-nél (itt használjuk fel, hogy n páratlan). Így
ami n2-tel egyenlő. Továbbá X2+Y2+Z2+U2 ugyanazt a maradékot adja n-nel osztva mint x2+y2+z2+u2, azaz 0-t. Tehát ez az összeg k n-nel egyenlő valamilyen k<n-re.
Az Euler-azonosság szerint
ahol A, B, C, D az azonosság jobb oldalán szereplő kifejezések.
A bal oldal a fentiek szerint kn2p. Másrészt viszont
és hasonlóan
Ezért A,B,C,D mindegyikét leoszthatjuk n-nel, amiből az adódik, hogy kp négy négyzetszám összege.
Más bizonyítások[szerkesztés]
A tételnek számos további bizonyítása van. Lehet igazolni geometriai számelméleti módszerekkel, kvaterniók segítségével (Hurwitz). Jacobi 1829-ben a
függvény negyedik hatványának együtthatóit vizsgálva az elliptikus függvények segítségével mutatta meg a tételt, sőt azt is bebizonyította, hogy ha n természetes szám, akkor
egész megoldásainak száma
ha n páratlan és
ha n páros.