A trigonometrikus és hiperbolikus függvények, illetve ezek inverzei
A hiperbolikus függvények a matematikában a szögfüggvényekhez hasonló függvények.
A két alapvető hiperbolikus függvény a hiperbolikus szinusz (jelölése sh vagy sinh) és a hiperbolikus koszinusz (jelölése ch vagy cosh), melyekből levezethető a hiperbolikus tangens (jelölése th vagy tanh) stb. függvény a szögfüggvényekhez hasonlóan. Ezeknek a függvényeknek az inverzei az area hiperbolikus függvények.
Ahogy a (cos t, sin t) pontok egy kört határoznak meg, úgy a (ch t, sh t) pontok egy hiperbola jobb oldali félgörbéjét írják le. A hiperbolikus függvények azért is fontosak, mert több lineáris differenciálegyenlet megoldását fel lehet írni a használatukkal. Ilyen például derékszögű koordináta-rendszerben a súlya alatt lelógó kábel egyenlete.
Alkalmazhatóak ezen kívül a Laplace-egyenlet megoldásánál, amely a fizika több területén – az elektromágnesség elméletében, hőátadásban, folyadékok dinamikájában és a speciális relativitáselméletben – is fontos.
Az x y = 1 hiperbolax > 1 tartományban lévő tetszőleges pontja hiperbolikus háromszöget határoz meg, amelyben a hiperbolikus szög melletti oldal a ch értékkel egyenlő, míg a szöggel szemben fekvő oldal az sh-val. Azonban mivel a hiperbola (1,1) pontja az origótól √2 távolságra van, ezért az oldalak hosszát 1/√2 tényezővel kell szoroznunk, hogy a helyes eredményt kapjuk.
Mint ahogy a (cos x, sin x) pontok egy kört ( x2 + y2 = 1) határoznak meg, a (ch x, sh x) pontok az x² - y² = 1 egyenlő szárú hiperbola jobb oldali görbéjét írják le. Ez ezen a könnyen ellenőrizhető azonosságon:
és azon alapul, hogy ch x > 0 minden x-re.
A hiperbolikus függvények periodikusak komplex periódus szerint.
A x paraméter nem a kör középponti szöge, mint a szögfüggvényeknél, hanem a hiperbolikus „szög”, amelynek értéke a kétszerese annak a területnek, melyet az x tengely, a hiperbola és egy, a hiperbola (ch x, sh x) pontjából az origóba húzott egyenes határol.
A hiperbolikus függvényekre igen sok olyan azonosság érvényes, melyek hasonlóak a szögfüggvények azonosságaihoz. Az Osborne-szabály kimondja, hogy minden trigonometrikus azonosságot egy analóg hiperbolikus azonossággá lehet alakítani a következőképpen:
lecseréljük a szögfüggvényt a hiperbolikus megfelelőjével és
az sh * sh kifejezés előjelét megváltoztatjuk.
Néhány példa:
A „kétszeres szög” képletek:
és a „fél-szög” képletek:
Megjegyzés: Ez megfelel a szögfüggvény párjának.
Megjegyzés: Ez megfelel a szögfüggvény párja szorozva (-1)-gyel.
Az sh xderiváltja ch x, a ch x deriváltja pedig sh x.
Kapcsolat az exponenciális függvénnyel[szerkesztés]
A hiperbolikus függvények definíciós képleteiből levezethetők a következő azonosságok: