Páros és páratlan számok

A Wikipédiából, a szabad enciklopédiából
(Paritás (matematika) szócikkből átirányítva)
Ugrás a navigációhoz Ugrás a kereséshez

A matematikában az egész számok közül páros és páratlan számokat különböztethetünk meg: párosak azok, amelyek oszthatóak 2-vel (más szóval 2 többszörösei), páratlanok, amelyek nem. Páros szám például a −6, a 0 és a 144; páratlan a −3, az 1 és a 23. (A nulla páros, mert a kettő többszöröse: 0×2=0.) Az elnevezés eredete, hogy páros számú dolog párokba rendezhető; páratlan számú esetén mindig marad egy, amelyiknek nincs párja. (Természetesen a párosításnak csak a természetes számok körében van értelme.)

A számok azon tulajdonságát, hogy párosak vagy páratlanok, a szám paritásának vagy párosságának nevezik.

Algebrai jelöléssel a páros számok halmaza a 2Z, a páratlanoké a 2Z+1. A páros számok halmaza ideál az egész számok gyűrűjében, a páratlan számok halmaza pedig a páros számok ideálja szerinti másik mellékosztály.

Egy szám éppen akkor páros vagy páratlan, ha a páros alapú számrendszerekben az utolsó számjegye az. Ezért például egy szám páros, ha a tízes alapú számrendszerben az utolsó számjegye 0, 2, 4, 6 vagy 8, és páratlan, ha 1, 3, 5, 7 vagy 9.

Az egyetlen páros prímszám a 2; minden más prím páratlan. A páratlan prímek két osztályba sorolhatók aszerint, hogy kettővel osztva őket és lefelé kerekítve páros vagy páratlan számot kapunk (más szóval a 4-gyel való maradékuk 1 vagy 3); mindkét osztályba végtelen sok prím esik.

Minden ismert tökéletes szám páros; nem ismert, hogy léteznek-e páratlan tökéletes számok.

A Goldbach-sejtés szerint minden 2-nél nagyobb páros szám előáll két prímszám összegeként. A sejtést számítógéppel egészen 4·1018-ig[1] igazolták, de nem ismert, hogy általában is igaz-e. A sejtés páratlan számokra vonatkozó változata szerint minden 5-nél nagyobb páratlan szám előáll három prímszám összegeként.

Műveletek[szerkesztés]

Azonos párosságú számok összege és különbsége páros, különbözőeké páratlan. Két egész szám szorzata páros, ha valamelyik szorzótényező páros, és páratlan, ha mindkettő páratlan. Mindez a maradékosztályokkal végzett műveleti tulajdonságok speciális esetének tekinthető.

Jegyzetek[szerkesztés]

  1. Tomás Oliveira e Silva, [1], accessed on 25 April 2008

Lásd még[szerkesztés]