Páros és páratlan számok
Ez a szócikk nem tünteti fel a független forrásokat, amelyeket felhasználtak a készítése során. Emiatt nem tudjuk közvetlenül ellenőrizni, hogy a szócikkben szereplő állítások helytállóak-e. Segíts megbízható forrásokat találni az állításokhoz! Lásd még: A Wikipédia nem az első közlés helye. |
A matematikában az egész számok közül páros és páratlan számokat különböztethetünk meg: párosak azok, amelyek oszthatóak 2-vel (más szóval 2 többszörösei), páratlanok, amelyek nem. Páros szám például a −6, a 0 és a 144; páratlan a −3, az 1 és a 23. (A nulla páros, mert a kettő többszöröse: 0×2=0.) Az elnevezés eredete, hogy páros számú dolog párokba rendezhető; páratlan számú esetén mindig marad egy, amelyiknek nincs párja. (Természetesen a párosításnak csak a természetes számok körében van értelme.)
A számok azon tulajdonságát, hogy párosak vagy páratlanok, a szám paritásának vagy párosságának nevezik.
Algebrai jelöléssel a páros számok halmaza a 2Z, a páratlanoké a 2Z+1. A páros számok halmaza ideál az egész számok gyűrűjében, a páratlan számok halmaza pedig a páros számok ideálja szerinti másik mellékosztály.
Egy szám éppen akkor páros vagy páratlan, ha a páros alapú számrendszerekben az utolsó számjegye az. Ezért például egy szám páros, ha a tízes alapú számrendszerben az utolsó számjegye 0, 2, 4, 6 vagy 8, és páratlan, ha 1, 3, 5, 7 vagy 9.
Az egyetlen páros prímszám a 2; minden más prím páratlan. A páratlan prímek két osztályba sorolhatók aszerint, hogy kettővel osztva őket és lefelé kerekítve páros vagy páratlan számot kapunk (más szóval a 4-gyel való maradékuk 1 vagy 3); mindkét osztályba végtelen sok prím esik.
Minden ismert tökéletes szám páros; nem ismert, hogy léteznek-e páratlan tökéletes számok.
A Goldbach-sejtés szerint minden 2-nél nagyobb páros szám előáll két prímszám összegeként. A sejtést számítógéppel egészen 4·1018-ig[1] igazolták, de nem ismert, hogy általában is igaz-e. A sejtés páratlan számokra vonatkozó változata szerint minden 5-nél nagyobb páratlan szám előáll három prímszám összegeként.
Műveletek[szerkesztés]
Azonos párosságú számok összege és különbsége páros, különbözőeké páratlan. Két egész szám szorzata páros, ha valamelyik szorzótényező páros, és páratlan, ha mindkettő páratlan. Mindez a maradékosztályokkal végzett műveleti tulajdonságok speciális esetének tekinthető.