Telecommunications network
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages)
(Learn how and when to remove this template message)
|
Network science | ||||
---|---|---|---|---|
Network types | ||||
Graphs | ||||
|
||||
Models | ||||
|
||||
| ||||
A telecommunications network is a collection of terminal nodes[1] in which links are connected so as to enable telecommunication between the terminals.[1] The transmission links connect the nodes together. The nodes use circuit switching, message switching or packet switching to pass the signal through the correct links and nodes to reach the correct destination terminal.
Each terminal in the network usually has a unique address so messages or connections can be routed to the correct recipients. The collection of addresses in the network is called the address space.
Examples of telecommunications networks are:[2]
- computer networks
- the Internet
- the telephone network
- the global Telex network
- the aeronautical ACARS network
Contents
Benefits of telecommunications and networking[edit]
Telecommunications facilitates interaction and information transfer over large distances. Businesses use telecommunications to expand and grow their networks. With Internet, computer, and telephone networks, businesses can allocate their resources efficiently. These core types of networks will be discussed below:
Computer network: a computer network consists of computers and devices connected to one another. Information can be transferred from one device to the next. For example, an office filled with computers can share files together on each separate device. Computer networks can range from a local area network (LAN) to a wide area network (WAN). The difference between the types of networks is the size. These types of computer networks work at certain speeds, also known as broadband. The Internet network connects computers worldwide.
Internet network: access to the network allows users to use many resources. Over time the Internet network will replace books. This will enable users to discover information almost instantly and apply concepts to different situations. The Internet can be used for recreational, governmental, educational, and other purposes. Businesses in particular use the Internet network for research or to service customers and clients.
Telephone network: the telephone network connects people to one another. This network can be used in a variety of ways. Many businesses use the telephone network to route calls and/or service their customers. Some businesses use a telephone network on a greater scale through a private branch exchange. It is a system where a specific business focuses on routing and servicing calls for another business. Majority of the time, the telephone network is used around the world for recreational purposes.
Network structure[edit]
In general, every telecommunications network conceptually consists of three parts, or planes (so called because they can be thought of as being, and often are, separate overlay networks):
- The data plane (also user plane, bearer plane, or forwarding plane) carries the network's users' traffic, the actual payload.
- The control plane carries control information (also known as signaling).
- The management plane carries the operations and administration traffic required for network management. The management plane is sometimes considered a part of the control plane.
Example: the TCP/IP data network[edit]
Data networks are used extensively throughout the world to connect individuals and organizations. Data networks can be connected to allow users seamless access to resources that are hosted outside of the particular provider they are connected to. The Internet[3] is the best example of many data networks[1]from different organizations all operating under a single address space.
Terminals attached to TCP/IP networks are addressed using IP addresses. There are different types of IP address, but the most common is IP Version 4. Each unique address consists of 4 integers between 0 and 255, usually separated by dots when written down, e.g. 82.131.34.56.
TCP/IP are the fundamental protocols that provide the control and routing of messages across the data network. There are many different network structures that TCP/IP can be used across to efficiently route messages, for example:
- wide area networks (WAN)
- metropolitan area networks (MAN)
- local area networks (LAN)
- Internet area networks (IAN)
- campus area networks (CAN)
- virtual private networks (VPN)
There are three features that differentiate MANs from LANs or WANs:
- The area of the network size is between LANs and WANs. The MAN will have a physical area between 5 and 50 km in diameter.[3]
- MANs do not generally belong to a single organization. The equipment that interconnects the network, the links, and the MAN itself are often owned by an association or a network provider that provides or leases the service to others.[3]
- A MAN is a means for sharing resources at high speeds within the network. It often provide connections to WAN networks for access to resources outside the scope of the MAN.[3]
Datacenter networks also rely highly on TCP/IP for communication across machines. They connect thousands of servers, are designed to be highly robust, provide low latency that is typically up to hundreds of microseconds, and high bandwidth. Datacenter network topology plays a significant role in determining the level of failure resiliency, ease of incremental expansion, communication bandwidth and latency.[4]
References[edit]
- ^ a b c "Design Elements - Telecommunication networks".
- ^ "Telecommunication Network - Types of Telecommunication Networks".
- ^ a b c d "Metropolitan Area Network (MAN)". Erg.abdn.ac.uk. Retrieved 2013-06-15.
- ^ Noormohammadpour, Mohammad; Raghavendra, Cauligi (28 July 2018). "Datacenter Traffic Control: Understanding Techniques and Tradeoffs". Communications Surveys & Tutorials, IEEE. 20 (2): 1492-1525.