In mathematics , specifically functional analysis , the Schatten norm (or Schatten–von-Neumann norm )
arises as a generalization of p -integrability similar to the trace class norm and the Hilbert–Schmidt norm.
Definition [ edit ]
Let
H
1
{\displaystyle H_{1}}
,
H
2
{\displaystyle H_{2}}
be separable Hilbert spaces, and
T
{\displaystyle T}
a (linear) bounded operator from
H
1
{\displaystyle H_{1}}
to
H
2
{\displaystyle H_{2}}
. For
p
∈
[
1
,
∞
)
{\displaystyle p\in [1,\infty )}
, define the Schatten p-norm of
T
{\displaystyle T}
as
‖
T
‖
p
:=
(
∑
n
≥
1
s
n
p
(
T
)
)
1
/
p
{\displaystyle \|T\|_{p}:={\bigg (}\sum _{n\geq 1}s_{n}^{p}(T){\bigg )}^{1/p}}
for
s
1
(
T
)
≥
s
2
(
T
)
≥
⋯
s
n
(
T
)
≥
⋯
≥
0
{\displaystyle s_{1}(T)\geq s_{2}(T)\geq \cdots s_{n}(T)\geq \cdots \geq 0}
the singular values of
T
{\displaystyle T}
, i.e. the eigenvalues of the Hermitian operator
|
T
|
:=
(
T
∗
T
)
{\displaystyle |T|:={\sqrt {(T^{*}T)}}}
.
From functional calculus on the positive operator
T
∗
T
{\displaystyle T^{*}T}
it follows that
‖
T
‖
p
p
=
t
r
(
|
T
|
p
)
.
{\displaystyle \|T\|_{p}^{p}=\mathrm {tr} (|T|^{p}).}
Properties [ edit ]
In the following we formally extend the range of
p
{\displaystyle p}
to
[
1
,
∞
]
{\displaystyle [1,\infty ]}
. The dual index to
p
=
∞
{\displaystyle p=\infty }
is then
q
=
1
{\displaystyle q=1}
.
The Schatten norms are isometrically invariant: for isometries
U
{\displaystyle U}
and
V
{\displaystyle V}
and
p
∈
[
1
,
∞
]
{\displaystyle p\in [1,\infty ]}
,
‖
U
T
V
‖
p
=
‖
T
‖
p
.
{\displaystyle \|UTV\|_{p}=\|T\|_{p}.}
They satisfy Hölder's inequality : for all
p
∈
[
1
,
∞
]
{\displaystyle p\in [1,\infty ]}
and
q
{\displaystyle q}
such that
1
p
+
1
q
=
1
{\displaystyle {\frac {1}{p}}+{\frac {1}{q}}=1}
, and operators
S
∈
L
(
H
2
,
H
3
)
,
T
∈
L
(
H
1
,
H
2
)
{\displaystyle S\in {\mathcal {L}}(H_{2},H_{3}),T\in {\mathcal {L}}(H_{1},H_{2})}
defined between Hilbert spaces
H
1
,
H
2
,
{\displaystyle H_{1},H_{2},}
and
H
3
{\displaystyle H_{3}}
respectively,
‖
S
T
‖
1
≤
‖
S
‖
p
‖
T
‖
q
.
{\displaystyle \|ST\|_{1}\leq \|S\|_{p}\|T\|_{q}.}
Sub-multiplicativity: For all
p
∈
[
1
,
∞
]
{\displaystyle p\in [1,\infty ]}
and operators
S
∈
L
(
H
2
,
H
3
)
,
T
∈
L
(
H
1
,
H
2
)
{\displaystyle S\in {\mathcal {L}}(H_{2},H_{3}),T\in {\mathcal {L}}(H_{1},H_{2})}
defined between Hilbert spaces
H
1
,
H
2
,
{\displaystyle H_{1},H_{2},}
and
H
3
{\displaystyle H_{3}}
respectively,
‖
S
T
‖
p
≤
‖
S
‖
p
‖
T
‖
p
.
{\displaystyle \|ST\|_{p}\leq \|S\|_{p}\|T\|_{p}.}
Monotonicity: For
1
≤
p
≤
p
′
≤
∞
{\displaystyle 1\leq p\leq p'\leq \infty }
,
‖
T
‖
1
≥
‖
T
‖
p
≥
‖
T
‖
p
′
≥
‖
T
‖
∞
.
{\displaystyle \|T\|_{1}\geq \|T\|_{p}\geq \|T\|_{p'}\geq \|T\|_{\infty }.}
Duality: Let
H
1
,
H
2
{\displaystyle H_{1},H_{2}}
be finite-dimensional Hilbert spaces,
p
∈
[
1
,
∞
]
{\displaystyle p\in [1,\infty ]}
and
q
{\displaystyle q}
such that
1
p
+
1
q
=
1
{\displaystyle {\frac {1}{p}}+{\frac {1}{q}}=1}
, then
‖
S
‖
p
=
sup
{
|
⟨
S
,
T
⟩
|
∣
‖
T
‖
q
=
1
}
,
{\displaystyle \|S\|_{p}=\sup \lbrace |\langle S,T\rangle |\mid \|T\|_{q}=1\rbrace ,}
where
⟨
S
,
T
⟩
=
t
r
(
S
∗
T
)
{\displaystyle \langle S,T\rangle =\mathrm {tr} (S^{*}T)}
denotes the Hilbert–Schmidt inner product .
Notice that
‖
⋅
‖
2
{\displaystyle \|\cdot \|_{2}}
is the Hilbert–Schmidt norm (see Hilbert–Schmidt operator ),
‖
⋅
‖
1
{\displaystyle \|\cdot \|_{1}}
is the trace class norm (see trace class ), and
‖
⋅
‖
∞
{\displaystyle \|\cdot \|_{\infty }}
is the operator norm (see operator norm ).
For
p
∈
(
0
,
1
)
{\displaystyle p\in (0,1)}
the function
‖
⋅
‖
p
{\displaystyle \|\cdot \|_{p}}
is an example of a quasinorm .
An operator which has a finite Schatten norm is called a Schatten class operator and the space of such operators is denoted by
S
p
(
H
1
,
H
2
)
{\displaystyle S_{p}(H_{1},H_{2})}
. With this norm,
S
p
(
H
1
,
H
2
)
{\displaystyle S_{p}(H_{1},H_{2})}
is a Banach space, and a Hilbert space for p = 2.
Observe that
S
p
(
H
1
,
H
2
)
⊆
K
(
H
1
,
H
2
)
{\displaystyle S_{p}(H_{1},H_{2})\subseteq {\mathcal {K}}(H_{1},H_{2})}
, the algebra of compact operators . This follows from the fact that if the sum is finite the spectrum will be finite or countable with the origin as limit point, and hence a compact operator (see compact operator on Hilbert space ).
References [ edit ]
Rajendra Bhatia, Matrix analysis, Vol. 169. Springer Science & Business Media, 1997.
John Watrous , Theory of Quantum Information, 2.3 Norms of operators , lecture notes, University of Waterloo, 2011.
Joachim Weidmann, Linear operators in Hilbert spaces, Vol. 20. Springer, New York, 1980.