Hyperplane
This article includes a list of references, but its sources remain unclear because it has insufficient inline citations. (January 2013) (Learn how and when to remove this template message) |
In geometry, a hyperplane is a subspace whose dimension is one less than that of its ambient space. If a space is 3-dimensional then its hyperplanes are the 2-dimensional planes, while if the space is 2-dimensional, its hyperplanes are the 1-dimensional lines. This notion can be used in any general space in which the concept of the dimension of a subspace is defined. In machine learning, hyperplanes are a key tool to create support vector machines for such tasks as computer vision and natural language processing.[1]
In different settings, the objects which are hyperplanes may have different properties. For instance, a hyperplane of an n-dimensional affine space is a flat subset with dimension n − 1.[2] By its nature, it separates the space into two half spaces. A hyperplane of an n-dimensional projective space does not have this property.
The difference in dimension between a subspace and its ambient space is known as the codimension of with respect to . Therefore, a necessary condition for to be a hyperplane in is for to have codimension one in .
Contents
Technical description[edit]
In geometry, a hyperplane of an n-dimensional space V is a subspace of dimension n − 1, or equivalently, of codimension 1 in V. The space V may be a Euclidean space or more generally an affine space, or a vector space or a projective space, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can be given in coordinates as the solution of a single (due to the "codimension 1" constraint) algebraic equation of degree 1.
If V is a vector space, one distinguishes "vector hyperplanes" (which are linear subspaces, and therefore must pass through the origin) and "affine hyperplanes" (which need not pass through the origin; they can be obtained by translation of a vector hyperplane). A hyperplane in a Euclidean space separates that space into two half spaces, and defines a reflection that fixes the hyperplane and interchanges those two half spaces.
Special types of hyperplanes[edit]
Several specific types of hyperplanes are defined with properties that are well suited for particular purposes. Some of these specializations are described here.
Affine hyperplanes[edit]
An affine hyperplane is an affine subspace of codimension 1 in an affine space. In Cartesian coordinates, such a hyperplane can be described with a single linear equation of the following form (where at least one of the 's is non-zero and is an arbitrary constant):
In the case of a real affine space, in other words when the coordinates are real numbers, this affine space separates the space into two half-spaces, which are the connected components of the complement of the hyperplane, and are given by the inequalities
and
As an example, a point is a hyperplane in 1-dimensional space, a line is a hyperplane in 2-dimensional space, and a plane is a hyperplane in 3-dimensional space. A line in 3-dimensional space is not a hyperplane, and does not separate the space into two parts (the complement of such a line is connected).
Any hyperplane of a Euclidean space has exactly two unit normal vectors.
Affine hyperplanes are used to define decision boundaries in many machine learning algorithms such as linear-combination (oblique) decision trees, and perceptrons.
Vector hyperplanes[edit]
In a vector space, a vector hyperplane is a subspace of codimension 1, only possibly shifted from the origin by a vector, in which case it is referred to as a flat. Such a hyperplane is the solution of a single linear equation.
Projective hyperplanes[edit]
Projective hyperplanes, are used in projective geometry. A projective subspace is a set of points with the property that for any two points of the set, all the points on the line determined by the two points are contained in the set.[3] Projective geometry can be viewed as affine geometry with vanishing points (points at infinity) added. An affine hyperplane together with the associated points at infinity forms a projective hyperplane. One special case of a projective hyperplane is the infinite or ideal hyperplane, which is defined with the set of all points at infinity.
In projective space, a hyperplane does not divide the space into two parts; rather, it takes two hyperplanes to separate points and divide up the space. The reason for this is that the space essentially "wraps around" so that both sides of a lone hyperplane are connected to each other.
Dihedral angles[edit]
The dihedral angle between two non-parallel hyperplanes of a Euclidean space is the angle between the corresponding normal vectors. The product of the transformations in the two hyperplanes is a rotation whose axis is the subspace of codimension 2 obtained by intersecting the hyperplanes, and whose angle is twice the angle between the hyperplanes.
Support hyperplanes[edit]
A hyperplane H is called a "support" hyperplane of the polyhedron P if P is contained in one of the two closed half-spaces bounded by H and .[4] The intersection of between P and H is defined to be a "face" of the polyhedron. The theory of polyhedrons and the dimension of the faces are analyzed by the looking at these intersections involving hyperplanes.
See also[edit]
- Hypersurface
- Decision boundary
- Ham sandwich theorem
- Arrangement of hyperplanes
- Separating hyperplane theorem
- Supporting hyperplane theorem
References[edit]
- ^ "Practical Uses of Hyperplanes". deepai.org.
- ^ "Excerpt from Convex Analysis, by R.T. Rockafellar" (PDF). u.arizona.edu.
- ^ Beutelspacher, Albrecht; Rosenbaum, Ute (1998), Projective Geometry: From Foundations to Applications, Cambridge University Press, p. 10, ISBN 9780521483643
- ^ Polytopes, Rings and K-Theory by Bruns-Gubeladze
- Charles W. Curtis (1968) Linear Algebra, page 62, Allyn & Bacon, Boston.
- Heinrich Guggenheimer (1977) Applicable Geometry, page 7, Krieger, Huntington ISBN 0-88275-368-1 .
- Victor V. Prasolov & VM Tikhomirov (1997,2001) Geometry, page 22, volume 200 in Translations of Mathematical Monographs, American Mathematical Society, Providence ISBN 0-8218-2038-9 .
External links[edit]
Look up hyperplane in Wiktionary, the free dictionary. |