Stress–energy tensor
Part of a series of articles about 
General relativity 

Fundamental concepts 
Phenomena 

The stress–energy tensor, sometimes stress–energy–momentum tensor or energy–momentum tensor, is a tensor quantity in physics that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and nongravitational force fields. The stress–energy tensor is the source of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.
Contents
Definition[edit]
The stress–energy tensor involves the use of superscripted variables (not exponents; see tensor index notation and Einstein summation notation). If Cartesian coordinates in SI units are used, then the components of the position fourvector are given by: x^{0} = t, x^{1} = x, x^{2} = y, and x^{3} = z, where t is time in seconds, and x, y, and z are distances in meters.
The stress–energy tensor is defined as the tensor T^{αβ} of order two that gives the flux of the αth component of the momentum vector across a surface with constant x^{β} coordinate. In the theory of relativity, this momentum vector is taken as the fourmomentum. In general relativity, the stress–energy tensor is symmetric,^{[1]}
In some alternative theories like Einstein–Cartan theory, the stress–energy tensor may not be perfectly symmetric because of a nonzero spin tensor, which geometrically corresponds to a nonzero torsion tensor.
Identifying the components of the tensor[edit]
Because the stress–energy tensor is of order two, its components can be displayed in 4 × 4 matrix form:
In the following, i and k range from 1 through 3.
The time–time component is the density of relativistic mass, i.e. the energy density divided by the speed of light squared.^{[2]} Its components have a direct physical interpretation. In the case of a perfect fluid this component is
where is the relativistic mass per unit volume, and for an electromagnetic field in otherwise empty space this component is
where E and B are the electric and magnetic fields, respectively.^{[3]}
The flux of relativistic mass across the x^{i} surface is equivalent to the density of the ith component of linear momentum,
The components
represent flux of ith component of linear momentum across the x^{k} surface. In particular,
(not summed) represents normal stress, which is called pressure when it is independent of direction. The remaining components
represent shear stress (compare with the stress tensor).
In solid state physics and fluid mechanics, the stress tensor is defined to be the spatial components of the stress–energy tensor in the proper frame of reference. In other words, the stress energy tensor in engineering differs from the stress–energy tensor here by a momentum convective term.
Covariant and mixed forms[edit]
In most of this article we work with the contravariant form, T^{μν} of the stress–energy tensor. However, it is often necessary to work with the covariant form,
or the mixed form,
or as a mixed tensor density
In this article we use the spacelike sign convention (−+++) for the metric signature.
Conservation law[edit]
In special relativity[edit]
The stress–energy tensor is the conserved Noether current associated with spacetime translations.
The divergence of the nongravitational stress–energy is zero. In other words, nongravitational energy and momentum are conserved,
When gravity is negligible and using a Cartesian coordinate system for spacetime, this may be expressed in terms of partial derivatives as
The integral form of this is
where N is any compact fourdimensional region of spacetime; is its boundary, a threedimensional hypersurface; and is an element of the boundary regarded as the outward pointing normal.
In flat spacetime and using Cartesian coordinates, if one combines this with the symmetry of the stress–energy tensor, one can show that angular momentum is also conserved:
In general relativity[edit]
When gravity is nonnegligible or when using arbitrary coordinate systems, the divergence of the stress–energy still vanishes. But in this case, a coordinate free definition of the divergence is used which incorporates the covariant derivative
where is the Christoffel symbol which is the gravitational force field.
Consequently, if is any Killing vector field, then the conservation law associated with the symmetry generated by the Killing vector field may be expressed as
The integral form of this is
In general relativity[edit]
In general relativity, the symmetric stress–energy tensor acts as the source of spacetime curvature, and is the current density associated with gauge transformations of gravity which are general curvilinear coordinate transformations. (If there is torsion, then the tensor is no longer symmetric. This corresponds to the case with a nonzero spin tensor in Einstein–Cartan gravity theory.)
In general relativity, the partial derivatives used in special relativity are replaced by covariant derivatives. What this means is that the continuity equation no longer implies that the nongravitational energy and momentum expressed by the tensor are absolutely conserved, i.e. the gravitational field can do work on matter and vice versa. In the classical limit of Newtonian gravity, this has a simple interpretation: energy is being exchanged with gravitational potential energy, which is not included in the tensor, and momentum is being transferred through the field to other bodies. In general relativity the Landau–Lifshitz pseudotensor is a unique way to define the gravitational field energy and momentum densities. Any such stress–energy pseudotensor can be made to vanish locally by a coordinate transformation.
In curved spacetime, the spacelike integral now depends on the spacelike slice, in general. There is in fact no way to define a global energy–momentum vector in a general curved spacetime.
The Einstein field equations[edit]
In general relativity, the stress tensor is studied in the context of the Einstein field equations which are often written as
where is the Ricci tensor, is the Ricci scalar (the tensor contraction of the Ricci tensor), is the metric tensor, Λ is the cosmological constant (negligible at the scale of a galaxy or smaller), and is the universal gravitational constant.
Stress–energy in special situations[edit]
Isolated particle[edit]
In special relativity, the stress–energy of a noninteracting particle with mass m and trajectory is:
where is the velocity vector (which should not be confused with fourvelocity, since it is missing a )
δ is the Dirac delta function and is the energy of the particle.
Stress–energy of a fluid in equilibrium[edit]
For a perfect fluid in thermodynamic equilibrium, the stress–energy tensor takes on a particularly simple form
where is the mass–energy density (kilograms per cubic meter), is the hydrostatic pressure (pascals), is the fluid's four velocity, and is the reciprocal of the metric tensor. Therefore, the trace is given by
The four velocity satisfies
In an inertial frame of reference comoving with the fluid, better known as the fluid's proper frame of reference, the four velocity is
the reciprocal of the metric tensor is simply
and the stress–energy tensor is a diagonal matrix
Electromagnetic stress–energy tensor[edit]
The Hilbert stress–energy tensor of a sourcefree electromagnetic field is
where is the electromagnetic field tensor.
Scalar field[edit]
The stress–energy tensor for a complex scalar field which satisfies the Klein–Gordon equation is
and when the metric is flat (Minkowski) its components work out to be:
Variant definitions of stress–energy[edit]
There are a number of inequivalent definitions of nongravitational stress–energy:
Hilbert stress–energy tensor[edit]
The Hilbert stress–energy tensor is defined as the functional derivative
where is the nongravitational part of the action, is the nongravitational part of the Lagrangian density, and the EulerLagrange equation has been used. This is symmetric and gaugeinvariant. See Einstein–Hilbert action for more information.
Canonical stress–energy tensor[edit]
Noether's theorem implies that there is a conserved current associated with translations through space and time. This is called the canonical stress–energy tensor. Generally, this is not symmetric and if we have some gauge theory, it may not be gauge invariant because spacedependent gauge transformations do not commute with spatial translations.
In general relativity, the translations are with respect to the coordinate system and as such, do not transform covariantly. See the section below on the gravitational stress–energy pseudotensor.
Belinfante–Rosenfeld stress–energy tensor[edit]
In the presence of spin or other intrinsic angular momentum, the canonical Noether stress energy tensor fails to be symmetric. The Belinfante–Rosenfeld stress energy tensor is constructed from the canonical stress–energy tensor and the spin current in such a way as to be symmetric and still conserved. In general relativity, this modified tensor agrees with the Hilbert stress–energy tensor.
Gravitational stress–energy[edit]
By the equivalence principle gravitational stress–energy will always vanish locally at any chosen point in some chosen frame, therefore gravitational stress–energy cannot be expressed as a nonzero tensor; instead we have to use a pseudotensor.
In general relativity, there are many possible distinct definitions of the gravitational stress–energy–momentum pseudotensor. These include the Einstein pseudotensor and the Landau–Lifshitz pseudotensor. The Landau–Lifshitz pseudotensor can be reduced to zero at any event in spacetime by choosing an appropriate coordinate system.
See also[edit]
 Cooperstock's energylocalization hypothesis
 Electromagnetic stress–energy tensor
 Energy condition
 Energy density of electric and magnetic fields
 Maxwell stress tensor
 Poynting vector
 Ricci calculus
 Segre classification
Notes and references[edit]
 ^ On pp. 141–142 of Misner, Thorne, and Wheeler, section 5.7 "Symmetry of the Stress–Energy Tensor" begins with "All the stress–energy tensors explored above were symmetric. That they could not have been otherwise one sees as follows."
 ^ Charles W., Misner, Thorne, Kip S., Wheeler, John A., (1973). Gravitation. San Frandisco: W. H. Freeman and Company. ISBN 0716703343.
 ^ d'Inverno, R.A, (1992). Introducing Einstein's Relativity. New York: Oxford University Press. ISBN 9780198596868.
 W. Wyss (2005). "The EnergyMomentum Tensor in Classical Field Theory" (PDF). Colorado, USA.
External links[edit]
 Lecture, Stephan Waner
 Caltech Tutorial on Relativity — A simple discussion of the relation between the Stress–Energy tensor of General Relativity and the metric