Transzformáció (matematika)
A geometriai transzformáció geometriai objektumok között létesitett megfeleltetés, reláció.
Szűkebb értelemben egy-egyértelmű :P→P* (pont-pont) megfeleltetés = ponttranszformáció.
A P pont e transzformáció tárgypontja, a megfeleltetett P* pont ennek képpontja vagy képe.
Az összetartozó (P;P*) rendezett pár: homológ pontpár. Hasonló értelemben használjuk a tárgyalakzat, képalakzat, homológ alakzatok elnevezéseket. Gyakran a transzformáció helyett is a görögből származó homológia szó szerepel az irodalomban.
Valamivel általánosabb értelmezésben transzformációnak nevezzük azokat a megfeleltetéseket is, amelyeknél a megfelelő elempárok különfélék. Pl.: ponthoz-egyenest és egyeneshez-pontot rendelő megfeleltetések, a korrelációk.
A geometriai transzformáció fogalmai szemléletes konkrétumokból származtathatók, de a tudomány fejlődése során absztrakttá váltak és korábban nem tapasztalt jellemzőkkel egészültek ki. Esetenként geometriai alakzatok (idomok, testek, ponthalmazok), máskor a sík/tér minden pontjának áthelyezéseként-átalakításaként értelmezzük. Ugyanígy váltakozva a sík önmagára vagy egy másik síkra való transzformálásáról beszélünk. Ugyancsak transzformáció a térbeli alakzatok síkbeli szemléltetése: ábrázolása, de pont-pont megfeleltetést valósítunk meg a Földet síkban ábrázoló térképeken is. A geometriai transzformáció egyik válfaját valósítják meg a komplex függvények.
Tartalomjegyzék
Története[szerkesztés]
Eukleidész az Elemekben csak két alakzat egybevágóságával és hasonlóságával, mint az összehasonlítás (összemérés) egyik attribútumával foglalkozik anélkül, hogy ezeket megnevezné. Csupán úgy szólnak a tételei, hogy "bizonyos méretek egyezése esetén más méretek is egyelők". (Pl. ha két háromszögben két oldal és a közbezárt szög megegyezik, akkor a harmadik oldal és a két másik szög is.) Az Elemek szellemében keletkezett ókori és középkori munkákban csupán nyomokban jelenik meg a megfeleltetés, s akkor is inkább olyan feladatokban, hogy "szerkesszük meg egy adott alakzat olyan képét ..." és az olyan kikötésében fogalmazódik meg (kezdetben burkoltan) az egybevágóság/hasonlóság kritériuma. Az Elemek szemlélete a szintetikus geometriát tárgyaló tankönyvek, monográfiák lapjain még a XX. sz.-ban is felfedezhető, (a szimmetrikus alakzatok vizsgálatával kiegészítve).
Bár az újkori matematikusok levelezésében követhető a fogalom fejlődése, az analitikus (koordinátás) tárgyalás első szisztematikus kidolgozását Leonard Eulernek tulajdoníthatjuk (Introductio in analysis infinitorum, 1784)
Az elnevezés eredete bizonytalan és nem is találó, hiszen mint a latin transformare ige származéka átalakítást jelent, de sok transzformáció éppenhogy nem változtatja meg az alakzatok formáját (egybevágóság, hasonlóság). Talán a transportatio (átszállítás), transplantatio (átültetés), transmissio (átküldés) szavak egyike alkalmasabb lett volna, hiszen a pont-transzformációk a sík/tér pontjait (kevés kivétellel) máshová helyezik. Gyanítható, hogy a fogalom kialakulására és elnevezésére akkor került sor, amikor a kutatók az egyszerű, szemléletes alaktartó transzformációk után a torzképet generáló (anamorf) megfeleltetésekkel is kezdtek foglalkozni.
A merev testek helyváltoztatásához, mozgásához kapcsolódó vizsgálatokból kiindulva jutott el a matematika a térbeli és síkbeli alakzatokra értelmezett leképezések, a geometriai transzformációk fontosságának felismeréséhez. Lényeges fordulatot hozott az 1872-es év. Ekkor hangzott el Felix Klein (1849–1925) német matematikus nevezetes előadása, amelyre a matematika története az Erlangeni Program néven utal. Klein ebben az összefoglalójában hívta fel a figyelmet, hogy a geometriai transzformációkat vizsgálhatjuk aszerint is, hogy egyes alakzatoknak milyen tulajdonságait örökítik; más szóhasználattal, hogy a transzformáció során melyik tulajdonság változatlan, invariáns.
Általános jellemzők[szerkesztés]
A ponttranszformációk tárgyalásánál az analitikus eszközöket nem használó szintetikus geometria a szemléletből származtatott geometriai fogalmakat használ, s a megállapítások főleg a szemléletes euklideszi sík (2D) és tér (3D) pontjaira, alakzataira vonatkoznak. Az analitikus eszközöket használó koordináta geometria (lineáris algebra) véges dimenziójú ponthalmazokkal, n dimenziós vektorterekkel foglalkozik. Különbözik a transzformáció megadása: szerkesztési szabály (algoritmus) illetve képlet (egyenlet). A két szakterület eszköztárával definiált fogalmakat, tételeket össze kell vetni, azaz igazolni, hogy más "nyelven", de ugyanarról beszélünk.
Ha a transzformációt megadó megfeleltetés egy-egyértelmű, akkor létezik az inverze, ami minden P* képponthoz annak tárgypontját rendeli.
Két vagy több transzformáció kompozícióját kapjuk, ha egymásután hajtjuk végre azokat: P→P* az első, P*→P** a második hozzárendelés, amelyet egyetlen P→P** helyettesít. Ezért célszerű az "egyszerű", (kevés eszközzel leírható) elemi vagy kanonikus és az összetett transzformációkat megkülönböztetni. A részletes tárgyalás kimutatja, hogy a kanonikus transzformációk kompozíciójával a sík minden olyan transzformációja előállítható, amelyik az összetevők invariáns tulajdonságaival rendelkezik.
Speciális alakzatok[szerkesztés]
- Invariáns (változatlan) alakzat: A sík/tér önmagára való leképezésekor néhány pont, egyenes vagy más fontos alakzat képe a tárgyával megegyezhet.
- Fix (mozdulatlan) alakzat: Olyan invariáns alakzat, melynek minden pontja helyben marad.
Síkban[szerkesztés]
- Centrum: fixpont, amelyre illeszkedő egyenesek invariáns egyenesek.
- Tengely: fixegyenes. (Hagyományos -szinonim- elnevezés: forgás-, tükrözés-, affinítás-tengelye !)
Térben[szerkesztés]
- Centrum: fixpont, amelyre illeszkedő egyenesek és síkok invariáns alakzatok.
- Tengely: fixegyenes, amelyre illeszkedő egyenesek (metszők) és síkok invariáns alakzatok.
- Tengely-sík: fixsík amelyre illeszkedő pontok és egyenesek invariáns alakzatok.
Transzformációk Klein-féle rendszerezése[szerkesztés]
(Nem osztályozás, mert átfedések vannak!)
Homeomorfia (topologikus transzformáció)[szerkesztés]
Nagyon általános, kevés invarianciát mutató transzformációt kapunk, ha egy ábrát rugalmas lemezre rajzolunk, majd a lemezt tetszőlegesen alakítjuk, miközben csak arra ügyelünk, hogy síkban maradjon. Az ábra szinte a felismerhetetlenségig eltorzul. A távolságok, a szögek, az arányok is megváltoznak, de a formák egy része így is felismerhető. Az egyenesek, körök, sokszögek akármilyen görbévé-idommá változtathatók. Néhány invariáns tulajdonságot azonban itt is felfedezhetünk, s ezek egyike a folytonosság. Ez a fura transzformáció megőrzi az elemek illeszkedését is. A vonalakon elhelyezkedő pontok rendezettsége is megmarad: a tárgy- és képalakzat egymással homeomorf = topologikusan ekvivalens. (Szemléletesen illusztrálja a topologikus transzformációt egy úthálózat deformált térképe.)
Anamorfia[szerkesztés]
A valamivel "szabályosabb" (szerkesztésekkel vagy képletekkel megadott) transzformációkat anamorfizmusoknak nevezik, ha nem minden egyenesnek egyenes a képe. Ilyen pl. a körre vonatkozó inverzió. Művészi ábrázolásnál is alkalmazzák.
Néhány példa és free-software!:
Kollineáció (projektivitás)[szerkesztés]
Olyan homeomorfia, aminél minden egyenes képe egyenes. A sík (bijektív[1]) egyenestartó leképezéseinek gyűjtőneve. Analitikusan elsőfokú (lineáris) egyenletrendszerrel adjuk meg: lineáris transzformáció. Az egyenesen levő pontnégyesek kettősviszonyát is megőrzi.
Affinitás[szerkesztés]
Olyan kollineáció, ami a párhuzamos egyeneseket párhuzamos egyenesekbe transzformálja: párhuzamosság tartó. Az egyenes három pontjának az osztóviszonyát is örökli a kép.
Hasonlóság[szerkesztés]
Olyan affinitás, ami megtartja a szakaszok arányát és az egyenesek hajlásszögét.
Egybevágóság[szerkesztés]
Olyan hasonlóság, ahol a szakaszok képének hossza is invariáns.
Elemi (kanonikus) síktranszformációk[szerkesztés]
Identitás[szerkesztés]
a P* = P szabállyal adott transzformáció (= minden pontnak önmaga a képe).
Mozgások[szerkesztés]
- Eltolás (transzláció): Minden PP* szakasz azonos irányú és nagyságú.
- Forgatás (rotáció): C fix, minden más P-re PP* azonos irányú és C közepű körív, azonos középponti szöggel.
(A transzformáció szempontjából közömbös a mozgás pályája.)
Tükrözések (szimmetriák)[szerkesztés]
- Tengelyes tükrözés: Ha P∈t, akkor P*=P, különben PP* ⊥ t és (P*t) = -(Pt).
- Középpontos tükrözés: Ha P=C, akkor P*=P, különben (P*C) = -(PC)
Tengely- / kör-szimmetrikus egy alakzat, ha önmagának a képe.
Középpontos hasonlóság[szerkesztés]
- Homotécia: Ha P=C, akkor P*=P, különben P* ∈ CP és CP* = k.CP (k≠0)
A hasonlóság aránya k < 0 és k > 0 is lehet,
- ha |k| < 1: kicsinyítés,
- ha 1 < |k|: nagyítás,
- ha k = 1: identitás,
- ha k = -1: tükrözés.
Tengelyes affinitások[szerkesztés]
- Merőleges (ortogonális) affinitás: Ha P∈t, akkor P*=P, különben PP* ⊥ t és tP* = k.tP (k≠0)
Az affinitás aránya k < 0 és k > 0 is lehet,
- ha |k| < 1: összenyomás,
- ha 1 < |k|: nyújtás,
- ha k = 1: identitás,
- ha k = -1: tükrözés.
- Párhuzamos affinitás (nyírás, eláció): Ha P∈t, akkor P*=P, különben PP* || t és tP* = k.tP (k≠0)
(A nem-merőleges (klinogonális) affinitás: PP* szakaszok t-vel alkotott szöge azonos. Nem elemi transzf., kompozícióként állítható elő. A)
Projektivitás[szerkesztés]
- Centrális-axiális kollineáció
A transzformációt a C centrumával, a t tengelyével és egy homológ pontpárral (P→P*) adhatjuk meg.
A leképezés: Ha P∈t és/vagy P=C, akkor P*=P, különben PP*∈C; továbbá ha e||t, akkor e*||t, különben az (ee*)∈t.
- ! Az euklideszi sík nem minden esetben kompakt erre a megfeleltetésre nézve, azaz nem minden pontjának van képe és nem minden pont kép!!
- Az ideális pontokkal kiegészített euklideszi sík (klasszikus projektív sík) azonban igen.
Térbeli kanonikus transzformációk[szerkesztés]
(Részletezés nélkül)
Mozgások[szerkesztés]
- Egyenes menti eltolás
- Tengely körüli forgatás
Tükrözések[szerkesztés]
- Pontra
- Egyenesre
- Síkra
(Invariáns alakzatok: gömb-, henger-, sík-szimmetrikusak.)
Hasonlóság[szerkesztés]
- Homotécia (középpontos kicsinyítés / nagyítás)
Affinitás[szerkesztés]
- Tengelyes (szűkítés / tágítás)
- Tengely-síkos (lapítás / széthúzás)
Projektivitás[szerkesztés]
- Centrális-tengelysíkos kollineáció
A transzformációk analízise[szerkesztés]
Az euklideszi sík transzformációi közül csak azokat vizsgálhatjuk az analitikus geometria eszközeivel, amelyeknek a leképezését
alakú transzformációs egyenletrendszerrel írhatjuk le.
A sík affin (hasonló, egybevágó) transzformációit
homogén lineáris egyenletrendszer definiálja: lineáris transzformációk.
A párhuzamosságot nem örökítő projektív transzformációk analíziséhez homogén koordinátákat kell használni
A kibővített euklideszi (=klasszikus projektív) sík közönséges pontjainak (x0≠0) kétféle koordinátáinak átszámításai:
illetve
- .
Pont- és bázistranszformáció[szerkesztés]
Az analitikus tárgyalásban meg szoktuk különböztetni két értelmezést:
- Pont-transzformáció: a sík pontjainak képét rögzített koordináta-rendszerben adjuk meg,
- Bázis-(rendszer-) transzformáció: a pontokat a síkban rögzítve a koordináta-rendszert transzformáljuk.
Ez utóbbi értelmezés szerint a leképezés a koordináta-hálózat képével szemléltethető.
Vetítés (projekció, perspektíva)[szerkesztés]
Két sík között úgy is megadhatunk egy leképezést, hogy a tárgysík pontjait a képsík pontjaiba vetítjük:
- paralel projekció: párhuzamos egyenesekkel
- centrális projekció: egy (külső) pontra illeszkedő egyenesekkel.
A vetítés által generált leképezés típusa ezen kívül a két sík kölcsönös helyzetétől is függ. (L.: ábra)
A sík vagy a tér önmagára való leképezése:
- perspektív: ha a homológ pontpárokat (PP*) összekötő egyenesek párhuzamosak, vagy centrálisak.
Síkvetületek[szerkesztés]
Különleges alkalmazásoknál használt transzformációk, például a
- térábrázolás (3D-grafika): elfajuló 3D kollineáció, (a tér pontjainak képe egy síkba kerül)
A műszaki gyakorlat a Monge-féle vetületeket és axonometrikus perspektívát, a művészi térábrázolás centrális perspektívát használ.
- térképvetület: a Földfelszín síkba transzformált képe.
A térképvetületek egy része valódi (perspektív) vetítéssel származtatható (valódi vetület), másokat analitikus formulákkal adják meg (képzetes vetület). A vetületek között összetett megfeleltetésekkel is találkozunk. (Pl.: A földgömböt hengerre, kúpra stb. vetítik, majd ezeket a térkép síkjára kiterítik, esetleg a közvetítő felületet ismételten vetítik.)
Hivatkozások[szerkesztés]
- Coxeter, H.S.M.: Projektív geometria, Gondolat, Budapest (1986)
- Courant, R. - Robins, H.: Mi a matematika?, Gondolat, Budapest (1966)
- Euklidész (Mayer Gy.): Elemek, Gondolat, Budapest (1983); ISBN 963 281 267 0.
- Hack Frigyes: A 3D-grafika geometriai alapjai, ELTE,Budapest (2002)
- Hajós György: Bevezetés a geometriába, Tankönyvkiadó, Budapest (1960)
- Halmai Erzsébet: Lineáris algebra, Tankönyvkiadó, Budapest (1979)
- Kárteszi Ferenc: Bevezetés a véges geometriákba, Akadémiai Kiadó, Budapest (1972)
- Kárteszi Ferenc: Ábrázoló geometria, Tankönyvkiadó, Budapest (1957)
- Pachné - Frey: Vektor- és tenzoranalízis, Műszaki Könyvkiadó, Budapest (1964)
- Péntek Kálmán: A lineáris algebra alapjai I., Oskar Kiadó, Szombathely (2000)
- Szendrei Ágnes: Diszkrét matematika Logika algebra kombinatorika, Polygon, Szeged (1994)