Glossary of artificial intelligence

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search


Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.

This glossary of artificial intelligence terms is about artificial intelligence, its sub-disciplines, and related fields.



A[edit]


B[edit]


C[edit]


D[edit]


E[edit]

F[edit]


G[edit]

H[edit]

  • Heuristic – is a technique designed for solving a problem more quickly when classic methods are too slow, or for finding an approximate solution when classic methods fail to find any exact solution. This is achieved by trading optimality, completeness, accuracy, or precision for speed. In a way, it can be considered a shortcut. A heuristic function, also called simply a heuristic, is a function that ranks alternatives in search algorithms at each branching step based on available information to decide which branch to follow. For example, it may approximate the exact solution.[141]
  • Hidden layer – an internal layer of neurons in an artificial neural network, not dedicated to input or output
  • Hidden unit – an neuron in a hidden layer in an artificial neural network
  • Hyper-heuristic – is a heuristic search method that seeks to automate, often by the incorporation of machine learning techniques, the process of selecting, combining, generating or adapting several simpler heuristics (or components of such heuristics) to efficiently solve computational search problems. One of the motivations for studying hyper-heuristics is to build systems which can handle classes of problems rather than solving just one problem.[142][143][144]

I[edit]


J[edit]

K[edit]

L[edit]

M[edit]


N[edit]

O[edit]

P[edit]


Q[edit]

R[edit]

S[edit]


T[edit]

U[edit]

V[edit]

W[edit]

X[edit]

Y[edit]

Z[edit]

See also[edit]

References and notes[edit]

  1. ^ a b For example: Josephson, John R.; Josephson, Susan G., eds. (1994). Abductive Inference: Computation, Philosophy, Technology. Cambridge, UK; New York: Cambridge University Press. doi:10.1017/CBO9780511530128. ISBN 978-0521434614. OCLC 28149683.
  2. ^ "Retroduction | Dictionary | Commens". Commens – Digital Companion to C. S. Peirce. Mats Bergman, Sami Paavola & João Queiroz. Retrieved 2014-08-24.
  3. ^ Colburn, Timothy; Shute, Gary (2007-06-05). "Abstraction in Computer Science". Minds and Machines. 17 (2): 169–184. doi:10.1007/s11023-007-9061-7. ISSN 0924-6495.
  4. ^ Kramer, Jeff (2007-04-01). "Is abstraction the key to computing?". Communications of the ACM. 50 (4): 36–42. CiteSeerX 10.1.1.120.6776. doi:10.1145/1232743.1232745. ISSN 0001-0782.
  5. ^ Michael Gelfond, Vladimir Lifschitz (1998) "Action Languages", Linköping Electronic Articles in Computer and Information Science, vol 3, nr 16.
  6. ^ "What is an Activation Function?". deepai.org.
  7. ^ Jang, Jyh-Shing R (1991). Fuzzy Modeling Using Generalized Neural Networks and Kalman Filter Algorithm (PDF). Proceedings of the 9th National Conference on Artificial Intelligence, Anaheim, CA, USA, July 14–19. 2. pp. 762–767.
  8. ^ Jang, J.-S.R. (1993). "ANFIS: adaptive-network-based fuzzy inference system". IEEE Transactions on Systems, Man and Cybernetics. 23 (3): 665–685. doi:10.1109/21.256541.
  9. ^ Abraham, A. (2005), "Adaptation of Fuzzy Inference System Using Neural Learning", in Nedjah, Nadia; de Macedo Mourelle, Luiza, Fuzzy Systems Engineering: Theory and Practice, Studies in Fuzziness and Soft Computing, 181, Germany: Springer Verlag, pp. 53–83, CiteSeerX 10.1.1.161.6135, doi:10.1007/11339366_3, ISBN 978-3-540-25322-8
  10. ^ Jang, Sun, Mizutani (1997) – Neuro-Fuzzy and Soft Computing – Prentice Hall, pp 335–368, ISBN 0-13-261066-3
  11. ^ Tahmasebi, P. (2012). "A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation" (PDF). Computers & Geosciences. 42: 18–27.
  12. ^ Tahmasebi, P. (2010). "Comparison of optimized neural network with fuzzy logic for ore grade estimation". Australian Journal of Basic and Applied Sciences. 4: 764–772.
  13. ^ Russell, S.J.; Norvig, P. (2002). Artificial Intelligence: A Modern Approach. Prentice Hall. ISBN 978-0-13-790395-5.
  14. ^ Rana el Kaliouby (Nov–Dec 2017). "We Need Computers with Empathy". Technology Review. 120 (6). p. 8.
  15. ^ Tao, Jianhua; Tieniu Tan (2005). "Affective Computing: A Review". Affective Computing and Intelligent Interaction. LNCS 3784. Springer. pp. 981–995. doi:10.1007/11573548.
  16. ^ Comparison of Agent Architectures Archived August 27, 2008, at the Wayback Machine
  17. ^ "Intel unveils Movidius Compute Stick USB AI Accelerator". 2017-07-21.
  18. ^ "Inspurs unveils GX4 AI Accelerator". 2017-06-21.
  19. ^ Shapiro, Stuart C. (1992). Artificial Intelligence In Stuart C. Shapiro (Ed.), Encyclopedia of Artificial Intelligence (Second Edition, pp. 54–57). New York: John Wiley. (Section 4 is on "AI-Complete Tasks".)
  20. ^ Solomonoff, R., "A Preliminary Report on a General Theory of Inductive Inference", Report V-131, Zator Co., Cambridge, Ma. (Nov. 1960 revision of the Feb. 4, 1960 report).
  21. ^ "Artificial intelligence: Google's AlphaGo beats Go master Lee Se-dol". BBC News. 2016-03-12. Retrieved 17 March 2016.
  22. ^ "AlphaGo | DeepMind". DeepMind.
  23. ^ "Research Blog: AlphaGo: Mastering the ancient game of Go with Machine Learning". Google Research Blog. 27 January 2016.
  24. ^ "Google achieves AI 'breakthrough' by beating Go champion". BBC News. 27 January 2016.
  25. ^ See Dung (1995)
  26. ^ See Besnard and Hunter (2001)
  27. ^ see Bench-Capon (2002)
  28. ^ Definition of AI as the study of intelligent agents:
  29. ^ Russell & Norvig 2009, p. 2.
  30. ^ "Artificial Neural Networks as Models of Neural Information Processing | Frontiers Research Topic". Retrieved 2018-02-20.
  31. ^ "Build with AI | DeepAI". DeepAI. Retrieved 2018-10-06.
  32. ^ "AAAI Corporate Bylaws".
  33. ^ "The Lengthy History of Augmented Reality". Huffington Post. May 15, 2016.
  34. ^ Schueffel, Patrick (2017). The Concise Fintech Compendium. Fribourg: School of Management Fribourg/Switzerland.
  35. ^ Ghallab, Malik; Nau, Dana S.; Traverso, Paolo (2004), Automated Planning: Theory and Practice, Morgan Kaufmann, ISBN 978-1-55860-856-6
  36. ^ Kephart, J.O.; Chess, D.M. (2003), "The vision of autonomic computing", Computer, 36: 41–52, CiteSeerX 10.1.1.70.613, doi:10.1109/MC.2003.1160055
  37. ^ [1]
  38. ^ Thrun, Sebastian (2010). "Toward Robotic Cars". Communications of the ACM. 53 (4): 99–106. doi:10.1145/1721654.1721679.
  39. ^ Gehrig, Stefan K.; Stein, Fridtjof J. (1999). Dead reckoning and cartography using stereo vision for an automated car. IEEE/RSJ International Conference on Intelligent Robots and Systems. 3. Kyongju. pp. 1507–1512. doi:10.1109/IROS.1999.811692. ISBN 0-7803-5184-3.
  40. ^ "Information Engineering Main/Home Page". www.robots.ox.ac.uk. Retrieved 2018-10-03.
  41. ^ Goodfellow, Ian; Bengio, Yoshua; Courville, Aaaron (2016) Deep Learning. MIT Press. p. 196. ISBN 9780262035613
  42. ^ "What is Backpropagation?". deepai.org.
  43. ^ Nielsen, Michael A. (2015). "Chapter 6". Neural Networks and Deep Learning.
  44. ^ "Deep Networks: Overview - Ufldl". ufldl.stanford.edu. Retrieved 2017-08-04.
  45. ^ Mozer, M. C. (1995). "A Focused Backpropagation Algorithm for Temporal Pattern Recognition". In Chauvin, Y.; Rumelhart, D. Backpropagation: Theory, architectures, and applications. ResearchGate. Hillsdale, NJ: Lawrence Erlbaum Associates. pp. 137–169. Retrieved 2017-08-21.
  46. ^ Robinson, A. J. & Fallside, F. (1987). The utility driven dynamic error propagation network (Technical report). Cambridge University, Engineering Department. CUED/F-INFENG/TR.1.
  47. ^ Werbos, Paul J. (1988). "Generalization of backpropagation with application to a recurrent gas market model". Neural Networks. 1 (4): 339–356. doi:10.1016/0893-6080(88)90007-x.
  48. ^ Feigenbaum, Edward (1988). The Rise of the Expert Company. Times Books. p. 317. ISBN 978-0-8129-1731-4.
  49. ^ Sivic, Josef (April 2009). "Efficient visual search of videos cast as text retrieval" (PDF). IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 4. IEEE. pp. 591–605.
  50. ^ McTear et al 2016, p. 167.
  51. ^ "Understanding the backward pass through Batch Normalization Layer". kratzert.github.io. Retrieved 24 April 2018.
  52. ^ Ioffe, Sergey; Szegedy, Christian (2015). "Batch Normalization: Accelerating Deep Network Training b y Reducing Internal Covariate Shift". arXiv:1502.03167.
  53. ^ "Glossary of Deep Learning: Batch Normalisation". medium.com. 2017-06-27. Retrieved 24 April 2018.
  54. ^ "Batch normalization in Neural Networks". towardsdatascience.com. 2017-10-20. Retrieved 24 April 2018.
  55. ^ "Bayesian versus Frequentist Probability". deepai.org.
  56. ^ Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S and Zaidi M. The Bees Algorithm. Technical Note, Manufacturing Engineering Centre, Cardiff University, UK, 2005.
  57. ^ Pham, D.T., Castellani, M. (2009), The Bees Algorithm – Modelling Foraging Behaviour to Solve Continuous Optimisation Problems. Proc. ImechE, Part C, 223(12), 2919-2938.
  58. ^ Pham, D. T.; Castellani, M. (2014). "Benchmarking and comparison of nature-inspired population-based continuous optimisation algorithms". Soft Computing. 18 (5): 871–903. doi:10.1007/s00500-013-1104-9.
  59. ^ Pham, Duc Truong; Castellani, Marco (2015). "A comparative study of the Bees Algorithm as a tool for function optimisation". Cogent Engineering. 2. doi:10.1080/23311916.2015.1091540.
  60. ^ Nasrinpour, H. R., Massah Bavani, A., Teshnehlab, M., (2017), Grouped Bees Algorithm: A Grouped Version of the Bees Algorithm, Computers 2017, 6(1), 5; (doi: 10.3390/computers6010005)
  61. ^ Cao, Longbing (2010). "In-depth Behavior Understanding and Use: the Behavior Informatics Approach". Information Science. 180 (17): 3067–3085. doi:10.1016/j.ins.2010.03.025.
  62. ^ Colledanchise Michele, and Ögren Petter 2016. How Behavior Trees Modularize Hybrid Control Systems and Generalize Sequential Behavior Compositions, the Subsumption Architecture, and Decision Trees. In IEEE Transactions on Robotics vol.PP, no.99, pp.1-18 (2016)
  63. ^ Colledanchise Michele, and Ögren Petter 2017. Behavior Trees in Robotics and AI: An Introduction.
  64. ^ Breur, Tom (July 2016). "Statistical Power Analysis and the contemporary "crisis" in social sciences". Journal of Marketing Analytics. 4 (2–3): 61–65. doi:10.1057/s41270-016-0001-3. ISSN 2050-3318.
  65. ^ Bachmann, Paul (1894). Analytische Zahlentheorie [Analytic Number Theory] (in German). 2. Leipzig: Teubner.
  66. ^ Landau, Edmund (1909). Handbuch der Lehre von der Verteilung der Primzahlen [Handbook on the theory of the distribution of the primes] (in German). Leipzig: B. G. Teubner. p. 883.
  67. ^ Rowan Garnier; John Taylor (2009). Discrete Mathematics: Proofs, Structures and Applications, Third Edition. CRC Press. p. 620. ISBN 978-1-4398-1280-8.
  68. ^ Steven S Skiena (2009). The Algorithm Design Manual. Springer Science & Business Media. p. 77. ISBN 978-1-84800-070-4.
  69. ^ Erman, L. D.; Hayes-Roth, F.; Lesser, V. R.; Reddy, D. R. (1980). "The Hearsay-II Speech-Understanding System: Integrating Knowledge to Resolve Uncertainty". ACM Computing Surveys. 12 (2): 213. doi:10.1145/356810.356816.
  70. ^ Corkill, Daniel D. (September 1991). "Blackboard Systems" (PDF). AI Expert. 6 (9): 40–47.
  71. ^ * Nii, H. Yenny (1986). Blackboard Systems (PDF) (Technical report). Department of Computer Science, Stanford University. STAN-CS-86-1123. Retrieved 2013-04-12.
  72. ^ Hayes-Roth, B. (1985). "A blackboard architecture for control". Artificial Intelligence. 26 (3): 251–321. doi:10.1016/0004-3702(85)90063-3.
  73. ^ NZZ- Die Zangengeburt eines möglichen Stammvaters. Website Neue Zürcher Zeitung. Seen 16. August 2013.
  74. ^ Official Homepage Roboy Archived 2013-08-03 at the Wayback Machine. Website Roboy. Seen 16. August 2013.
  75. ^ Official Homepage Starmind. Website Starmind. Seen 16. August 2013.
  76. ^ Sabour, Sara; Frosst, Nicholas; Hinton, Geoffrey E. (2017-10-26). "Dynamic Routing Between Capsules". arXiv:1710.09829 [cs.CV].
  77. ^ "What is a chatbot?". techtarget.com. Retrieved 30 January 2017.
  78. ^ "Cloud Robotics and Automation A special issue of the IEEE Transactions on Automation Science and Engineering". IEEE. Retrieved 7 December 2014.
  79. ^ "RoboEarth".
  80. ^ Goldberg, Ken. "Cloud Robotics and Automation".
  81. ^ Li, R. "Cloud Robotics-Enable cloud computing for robots". Retrieved 7 December 2014.
  82. ^ Fisher, Douglas (1987). "Knowledge acquisition via incremental conceptual clustering" (PDF). Machine Learning. 2 (2): 139–172. doi:10.1007/BF00114265.
  83. ^ Fisher, Douglas H. (July 1987). "Improving inference through conceptual clustering". Proceedings of the 1987 AAAI Conferences. AAAI Conference. Seattle Washington. pp. 461–465.
  84. ^ William Iba and Pat Langley (2011-01-27). "Cobweb models of categorization and probabilistic concept formation". In Emmanuel M. Pothos and Andy J. Wills. Formal approaches in categorization. Cambridge: Cambridge University Press. pp. 253–273. ISBN 9780521190480.
  85. ^ Refer to the ICT website: http://cogarch.ict.usc.edu/
  86. ^ "Hewlett Packard Labs".
  87. ^ Terdiman, Daniel (2014) .IBM's TrueNorth processor mimics the human brain.http://www.cnet.com/news/ibms-truenorth-processor-mimics-the-human-brain/
  88. ^ Knight, Shawn (2011). IBM unveils cognitive computing chips that mimic human brain TechSpot: August 18, 2011, 12:00 PM
  89. ^ Hamill, Jasper (2013). Cognitive computing: IBM unveils software for its brain-like SyNAPSE chips The Register: August 8, 2013
  90. ^ Denning. P.J. (2014). "Surfing Toward the Future". Communications of the ACM. 57 (3): 26–29. doi:10.1145/2566967.
  91. ^ Dr. Lars Ludwig (2013). "Extended Artificial Memory. Toward an integral cognitive theory of memory and technology" (pdf). Technical University of Kaiserslautern. Retrieved 2017-02-07.
  92. ^ "Research at HP Labs".
  93. ^ "Automate Complex Workflows Using Tactical Cognitive Computing: Coseer". thesiliconreview.com. Retrieved 2017-07-31.
  94. ^ Cognitive science is an interdisciplinary field of researchers from Linguistics, psychology, neuroscience, philosophy, computer science, and anthropology that seek to understand the mind. How We Learn: Ask the Cognitive Scientist
  95. ^ Schrijver, Alexander (February 1, 2006). A Course in Combinatorial Optimization (PDF), page 1.
  96. ^ HAYKIN, S. Neural Networks - A Comprehensive Foundation. Second edition. Pearson Prentice Hall: 1999.
  97. ^ "PROGRAMS WITH COMMON SENSE". www-formal.stanford.edu. Retrieved 2018-04-11.
  98. ^ Ernest Davis; Gary Marcus (2015). "Commonsense reasoning". Communications of the ACM. Vol. 58 no. 9. pp. 92–103. doi:10.1145/2701413.
  99. ^ Hulstijn, J, and Nijholt, A. (eds.). Proceedings of the International Workshop on Computational Humor. Number 12 in Twente Workshops on Language Technology, Enschede, Netherlands. University of Twente, 1996.
  100. ^ "ACL - Association for Computational Learning".
  101. ^ Trappenberg, Thomas P. (2002). Fundamentals of Computational Neuroscience. United States: Oxford University Press Inc. p. 1. ISBN 978-0-19-851582-1.
  102. ^ What is computational neuroscience? Patricia S. Churchland, Christof Koch, Terrence J. Sejnowski. in Computational Neuroscience pp.46-55. Edited by Eric L. Schwartz. 1993. MIT Press "Archived copy". Archived from the original on 2011-06-04. Retrieved 2009-06-11.CS1 maint: Archived copy as title (link)
  103. ^ Press, The MIT. "Theoretical Neuroscience". The MIT Press. Retrieved 2018-05-24.
  104. ^ Gerstner, W.; Kistler, W.; Naud, R.; Paninski, L. (2014). Neuronal Dynamics. Cambridge, UK: Cambridge University Press. ISBN 9781107447615.
  105. ^ "WordNet Search—3.1". Wordnetweb.princeton.edu. Retrieved 14 May 2012.
  106. ^ Dana H. Ballard; Christopher M. Brown (1982). Computer Vision. Prentice Hall. ISBN 0-13-165316-4.
  107. ^ Huang, T. (1996-11-19). Vandoni, Carlo, E, ed. Computer Vision : Evolution And Promise (PDF). 19th CERN School of Computing. Geneva: CERN. pp. 21–25. doi:10.5170/CERN-1996-008.21. ISBN 978-9290830955.
  108. ^ Milan Sonka; Vaclav Hlavac; Roger Boyle (2008). Image Processing, Analysis, and Machine Vision. Thomson. ISBN 0-495-08252-X.
  109. ^ Garson, James (27 November 2018). Zalta, Edward N., ed. The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University – via Stanford Encyclopedia of Philosophy.
  110. ^ "Ishtar for Belgium to Belgrade". European Broadcasting Union. Retrieved 19 May 2013.
  111. ^ LeCun, Yann. "LeNet-5, convolutional neural networks". Retrieved 16 November 2013.
  112. ^ Zhang, Wei (1988). "Shift-invariant pattern recognition neural network and its optical architecture". Proceedings of annual conference of the Japan Society of Applied Physics.
  113. ^ Zhang, Wei (1990). "Parallel distributed processing model with local space-invariant interconnections and its optical architecture". Applied Optics. 29 (32): 4790–7. Bibcode:1990ApOpt..29.4790Z. doi:10.1364/AO.29.004790. PMID 20577468.,
  114. ^ Tian, Yuandong; Zhu, Yan (2015). "Better Computer Go Player with Neural Network and Long-term Prediction". arXiv:1511.06410v1 [cs.LG].
  115. ^ "How Facebook's AI Researchers Built a Game-Changing Go Engine". MIT Technology Review. December 4, 2015. Retrieved 2016-02-03.
  116. ^ "Facebook AI Go Player Gets Smarter With Neural Network And Long-Term Prediction To Master World's Hardest Game". Tech Times. 2016-01-28. Retrieved 2016-04-24.
  117. ^ "Facebook's artificially intelligent Go player is getting smarter". VentureBeat. 2016-01-27. Retrieved 2016-04-24.
  118. ^ Solomonoff, R.J.The Time Scale of Artificial Intelligence; Reflections on Social Effects, Human Systems Management, Vol 5 1985, Pp 149-153
  119. ^ Moor, J., The Dartmouth College Artificial Intelligence Conference: The Next Fifty years, AI Magazine, Vol 27, No., 4, Pp. 87-9, 2006
  120. ^ Kline, Ronald R., Cybernetics, Automata Studies and the Dartmouth Conference on Artificial Intelligence, IEEE Annals of the History of Computing, October–December, 2011, IEEE Computer Society
  121. ^ Haghighat, Mohammad; Abdel-Mottaleb, Mohamed; Alhalabi, Wadee (2016). "Discriminant Correlation Analysis: Real-Time Feature Level Fusion for Multimodal Biometric Recognition". IEEE Transactions on Information Forensics and Security. 11 (9): 1984–1996. doi:10.1109/TIFS.2016.2569061.
  122. ^ Maurizio Lenzerini (2002). "Data Integration: A Theoretical Perspective" (PDF). PODS 2002. pp. 233–246.
  123. ^ Big Data Integration
  124. ^ Frederick Lane (2006). "IDC: World Created 161 Billion Gigs of Data in 2006".
  125. ^ Dhar, V. (2013). "Data science and prediction". Communications of the ACM. 56 (12): 64–73. doi:10.1145/2500499.
  126. ^ Jeff Leek (2013-12-12). "The key word in "Data Science" is not Data, it is Science". Simply Statistics.
  127. ^ Hayashi, Chikio (1998-01-01). "What is Data Science? Fundamental Concepts and a Heuristic Example". In Hayashi, Chikio; Yajima, Keiji; Bock, Hans-Hermann; Ohsumi, Noboru; Tanaka, Yutaka; Baba, Yasumasa. Data Science, Classification, and Related Methods. Studies in Classification, Data Analysis, and Knowledge Organization. Springer Japan. pp. 40–51. doi:10.1007/978-4-431-65950-1_3. ISBN 9784431702085.
  128. ^ Dedić, Nedim; Stanier, Clare (2016). Hammoudi, Slimane; Maciaszek, Leszek; Missikoff, Michele M. Missikoff; Camp, Olivier; Cordeiro, José, eds. An Evaluation of the Challenges of Multilingualism in Data Warehouse Development. International Conference on Enterprise Information Systems, 25–28 April 2016, Rome, Italy (PDF). Proceedings of the 18th International Conference on Enterprise Information Systems (ICEIS 2016). 1. SciTePress. pp. 196–206. doi:10.5220/0005858401960206. ISBN 978-989-758-187-8.
  129. ^ "9 Reasons Data Warehouse Projects Fail". blog.rjmetrics.com. Retrieved 2017-04-30.
  130. ^ Hendrickx, Iris; Van den Bosch, Antal (October 2005). "Hybrid algorithms with Instance-Based Classification". Machine Learning: ECML2005. Springer. pp. 158–169.
  131. ^ a b Adam Ostrow (March 5, 2011). "Roger Ebert's Inspiring Digital Transformation". Mashable Entertainment. Retrieved 2011-09-12. With the help of his wife, two colleagues and the Alex-equipped MacBook that he uses to generate his computerized voice, famed film critic Roger Ebert delivered the final talk at the TED conference on Friday in Long Beach, California....
  132. ^ JENNIFER 8. LEE (March 7, 2011). "Roger Ebert Tests His Vocal Cords, and Comedic Delivery". The New York Times. Retrieved 2011-09-12. Now perhaps, there is the Ebert Test, a way to see if a synthesized voice can deliver humor with the timing to make an audience laugh.... He proposed the Ebert Test as a way to gauge the humanness of a synthesized voice.
  133. ^ "Roger Ebert's Inspiring Digital Transformation". Tech News. March 5, 2011. Retrieved 2011-09-12. Meanwhile, the technology that enables Ebert to “speak” continues to see improvements – for example, adding more realistic inflection for question marks and exclamation points. In a test of that, which Ebert called the “Ebert test” for computerized voices,
  134. ^ Alex_Pasternack (Apr 18, 2011). "A MacBook May Have Given Roger Ebert His Voice, But An iPod Saved His Life (Video)". Motherboard. Retrieved 2011-09-12. He calls it the “Ebert Test,” after Turing’s AI standard...
  135. ^ Herbert Jaeger and Harald Haas. Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication. Science 2 April 2004: Vol. 304. no. 5667, pp. 78 – 80 doi:10.1126/science.1091277 PDF
  136. ^ Herbert Jaeger (2007) Echo State Network. Scholarpedia.
  137. ^ Martignon, Laura; Vitouch, Oliver; Takezawa, Masanori; Forster, Malcolm. "Naive and Yet Enlightened: From Natural Frequencies to Fast and Frugal Decision Trees", published in Thinking : Psychological perspectives on reasoning, judgement and decision making (David Hardman and Laura Macchi; editors), Chichester: John Wiley & Sons, 2003.
  138. ^ Hodgson, Dr. J. P. E., "First Order Logic", Saint Joseph's University, Philadelphia, 1995.
  139. ^ Hughes, G. E., & Cresswell, M. J., A New Introduction to Modal Logic (London: Routledge, 1996), p.161.
  140. ^ Feigenbaum, Edward (1988). The Rise of the Expert Company. Times Books. p. 318. ISBN 978-0-8129-1731-4.
  141. ^ Pearl, Judea (1984). Heuristics: intelligent search strategies for computer problem solving. United States: Addison-Wesley Pub. Co., Inc., Reading, MA. p. 3. Retrieved June 13, 2017.
  142. ^ E. K. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, and S. Schulenburg, Hyper-heuristics: An emerging direction in modern search technology, Handbook of Metaheuristics (F. Glover and G. Kochenberger, eds.), Kluwer, 2003, pp. 457–474.
  143. ^ P. Ross, Hyper-heuristics, Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques (E. K. Burke and G. Kendall, eds.), Springer, 2005, pp. 529-556.
  144. ^ E. Ozcan, B. Bilgin, E. E. Korkmaz, A Comprehensive Analysis of Hyper-heuristics, Intelligent Data Analysis, 12:1, pp. 3-23, 2008.
  145. ^ Paskin, Mark. "A Short Course on Graphical Models" (PDF). Standford.